www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz
Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:37 Fr 02.12.2005
Autor: Kati

Ich habe diese Frage noch in keinem Internetforum gestellt.

Hallo ihr!

Also ich komm hier bei folgender Aufgabe irgendwie nicht voran.
Für jedes z [mm] \in \IC [/mm] mit |z| < 1 konvergiert die Folge [mm] (z^{n})_{0}^{\infty} [/mm] gegen 0

Also ich hab mir folgendes überlegt:
|z| < 1 heißt Wurzel aus ( z * [mm] \overline{z} [/mm] ) < 1 also z * [mm] \overline{z} [/mm] < 1 also [mm] a^{2} +b^{2} [/mm] < 1

Dann muss ich ja wohl irgendwie zeigen:
[mm] |(a+ib)^{n} [/mm] - 0 | < [mm] \epsilon [/mm] also [mm] |(a+ib)^{n} [/mm] | < [mm] \epsilon [/mm]
Ich bin mir nicht sicher, aber vielleicht würde auch reichen wenn ich zeigen würde dass [mm] |a^{n} [/mm] - 0 |< [mm] \epsilon [/mm] und [mm] |b^{n} [/mm] - 0 |< [mm] \epsilon [/mm]

Nun komm ich aber jetzt schon gar net mehr weiter... könnte mir jemand mal nen Anfang machen, oder nen Tipp dazu geben? Das könnt ich echt dringend gebrauchen...

Lieben Gruß, Katrin

        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 09:53 Sa 03.12.2005
Autor: MatthiasKr

Hallo katrin,

für reelle zahlen $x$ mit $|x|<1$ ist die aussage ja klar, nicht?

auf diese aussage solltest du am besten also auch den komplexen fall reduzieren. dabei hilft dir die polarkoordinaten-darstellung von $z$, also

[mm] $z=r\cdot e^{i\cdot \theta}$ [/mm]

dabei ist $r$ der betrag von $z$, also $r<1$, und [mm] $\theta$ [/mm] der winkel, in dem $z$ zur positiven reellen achse steht. diese darstellung kennst du,oder?

wenn man diese darstellung hat, kann man sehr viel leichter die potenzen von $z$ bestimmen, nämlich

[mm] $z^n=r^n\cdot e^{i\cdot\theta\cdot n}$ [/mm]

und damit ist deine aufgabe schon fast gelöst! ;-)

VG
Matthias

Bezug
                
Bezug
Konvergenz: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 16:09 Sa 03.12.2005
Autor: Kati

Hi!

Dummerweise kenne ich diese Darstellung leider nicht, das muss doch aber auch irgendwie anders gehen oder?

Gruß Katrin

Bezug
                        
Bezug
Konvergenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:08 Mo 05.12.2005
Autor: matux

Hallo Kati!


Leider konnte Dir keiner hier mit Deinem Problem / Deiner Rückfrage in der von Dir vorgegebenen Zeit weiterhelfen.

Vielleicht hast Du ja beim nächsten Mal mehr Glück [kleeblatt] .


Viele Grüße,
Matux, der Foren-Agent

Allgemeine Tipps wie du dem Überschreiten der Fälligkeitsdauer entgegenwirken kannst findest du in den Regeln für die Benutzung unserer Foren.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de