www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Konvergenz
Konvergenz < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:05 Mi 25.01.2006
Autor: charly1607

Aufgabe
Untersuchen Sie die folgenden Funktionsfolgen [mm] f_n: [/mm] [-1,1] [mm] \to \IR [/mm] auf punktweise und gleichmäßige Konvergenz. Geben Sie jeweils die Grenzfunktion an:
a) [mm] f_n(x)=(x+1/n)² [/mm]
b) [mm] f_n(x)=|x|² [/mm]
c) [mm] f_n(x)= \wurzel[n]{|x|} [/mm]
d) [mm] f_n(x)= x^n*(1-x)^n [/mm]

hallo, also bei der a hab ich ja was raus, weiß da aber nicht, wie ich das ganze nach n umstellen soll: 2/n+1/(n²)<varepsilon
bei den anderen hab ich schon schwierigkeiten bei der grenzwertbestimmung. aber bei b müsste der grenzwert 1 sein. da komm ich dann aber mit dem beweis, also  | fn(x)-f(x)|, nicht weiter. also ich bräuchte da hilfe. wäre echt super, wenn mir jemand weiter helfen könnte. danke

        
Bezug
Konvergenz: Idee
Status: (Antwort) fertig Status 
Datum: 20:17 Do 26.01.2006
Autor: Keffchen

Hallo erstmal.

Zu  (a):

Also $ [mm] f_n(x)=(x+1/n)² [/mm] $ konvergiert ja erstmal punktweise gegen x². Es gibt so einen Satz der besagt, dass wenn die Grenzfunktion stetig ist dann konvergiert die Funktion gleichmäßig.(Satz von Dini) Also ist die Funktionenfolge sogar gleichmäßig konvergent. Ich glaube eine zweite Bedingung ist, dass die Folge von Funkionen auch stetig sein muss.

Zu (b):

Bei der zweiten würde ich sagen, dass die Fktfolge gegen sich selbst konvergiert. Hier hast du ja kein (n) mit drin. Also bedeutet dies doch das die Folge immer so bleibt. Also kannst du doch  auf jeden Fall zu jedem  [mm] \varepsilon [/mm] ein n finden(es hängt ja nicht von n ab) so dass gilt |fn(x)-f(x)|< [mm] \varepsilon. [/mm] Daraus folgt:  [mm] \varepsilon [/mm] > 0, da fn(x)=f(x)

Zu (c)

Bei der dritten ist  [mm] \limes_{n\rightarrow\infty}fn(x) [/mm] = 1   [mm] \vee [/mm] x aus [-1,1]. Dies gilt da die n - te Wurzel aus x , wobei n gegen unendlich geht eins ist..
[mm] f(n)=\begin{cases} 0, & \mbox{für } x \mbox{ gleich 0} \\ 1, & \mbox{für } x \mbox{ ungleich 0} \end{cases} [/mm] Diese Funktion ist jedoch nicht stetig,  daher ist die Funktion nicht gleichmäßig konvergent.(Satz von Dini)

Zu (d)

Für x=1 konvergieren die Fkt. gegen 0. Das selbe gilt für x = 0.

Unter anderem ist $ [mm] f_n(x)= x^n\cdot{}(1-x)^n [/mm] = [mm] f_n(x)= (x-x^2)^n$. [/mm] Unter anderem ist ja [mm] x-x^2 [/mm] für x [mm] \varepsilon[-1,1] [/mm] kleiner als 1 größer als -1 für x ungleich 0 und 1, da du ja von x immer etwas was keiner als x ist abziehst. Somit kommt man zum Schluss das auch für diese x die Funktionen gegen 0 konvergieren. Damit konvergiert die Funktion punktweise auf die stetige Funktion f(x)=0. Damit ist sie sogar gleichmäßig konvergent.

Ich hoffe ich konnte dir helfen. Also ich geben natürlich keine Garantie drauf, dass alles richtig ist. :) Viel Glück noch.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de