www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Konvergenz
Konvergenz < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:52 Do 09.11.2006
Autor: chief

Aufgabe
Zeigen Sie die Konvergenz [mm] b_{n}:=(2n-1)^-1/3 [/mm] -> 0 (n->infinity), indem Sie zu jedem [mm] \varepsilon [/mm] > 0 ein [mm] n_{0} \in \IN [/mm] mit [mm] |b_{n}| [/mm] < [mm] \varepsilon [/mm] für alle n [mm] \ge n_{0} [/mm] finden.

Kann mir jemand helfen? Ich kapiere nicht einmal die Aufgabenstellung :(




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 17:57 Do 09.11.2006
Autor: leduart

Hallo chief
Erst mal kapieren was es heisst, dass eine Folge an gegen einen Grenzwert konvergiert für n gegen [mm] \infty: [/mm]
Anschaulich, wenn man ein genügend großes n wählt kommt man beliebig nache mit an an den Grenzwert. d.h. bei deiner Folge ab einem bestimmten N sind alle an so klein wie man will. Da man "so klein wie man will" nicht genau definieren kann, sagt man: zu JEDEM [mm] \varepsilon>0 [/mm] gibt es ein N so dass alle an mit n>N näher als [mm] \varepsilon [/mm] an 0 dran sind, d.h. [mm] |an|<\varepsilon. [/mm]
Du kannst dir vorstellen jemand fragt "ab welchem n ist denn an<1/1000
dann musst du ne Antwort geben ab n=N=...
Damit nicht genug, wenn er jetzt fragt ab wo ist es denn kleiner als 1/100000, brauchst du wieder ne Antwort usw,. er kann jede Zahl sagen!
Und da es für wirklich JEDEZahl ein N geben muss rechnet man das meist aus der allgemeinen Zahl [mm] \varepsilon [/mm] aus statt speziell für 1/1000 oder 1/300.
meist ist es leichter aus der ungleichung [mm] |an|<\varepsilon [/mm] ein N auszurechnen.
z.Bsp, [mm] an=1/\wurzel{n} [/mm] Behauptung konvergiert mit GW 0
also suchst du ein N für [mm] |1/\wurzel{n}|<\varepsilon [/mm]
also [mm] (1/\wurzel{n})^2<\varepsilon^2 [/mm]  d.h. [mm] 1/n<\varepsilon^2 [/mm] oder [mm] n>1/\varepsilon^2 [/mm] also gibst du an : wenn [mm] n>N=[1/\varepsilon^2] [/mm] ( [] für nächste ganze Zahl) ist dann gilt: [mm] |1/\wurzel{n}|<\varepsilon [/mm]
ähnlich gehts mit deiner Aufgabe!
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de