www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz
Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: 2 Aufgaben
Status: (Frage) beantwortet Status 
Datum: 22:40 So 03.06.2007
Autor: eruzele

Aufgabe
Konvergenzgrenzen?
1 [mm] \sum_{n=1}^{\infty} \bruch{1}{x^2+n^2} [/mm] und
2 [mm] \sum_{n=1}^{\infty} \bruch{(-1)^n}{x+n!} [/mm]

Hallo,
es wäre sehr nett, wenn mir jemand dabei helfen könnte. Am Wochenende habe ich eine Prüfung und ich verstehe kaum, wie man hier vorgeht. Wie geht man genau vor? Die erste Aufgabe habe ich mit Quotienten-Kriterium zu lösen probiert, aber ich komme nicht auf die richtigen Ergebnisse bei 1. [mm] \(-\infty; +\infty) [/mm] und bei 2. [mm] x \ne -k, k \in N [/mm]
vielen Dank!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 23:18 So 03.06.2007
Autor: leduart

Hallo
Zu 1
[mm] \bruch{1}{x^2+n^2}<\bruch{1}{n^2}. [/mm] für alle xaus [mm] \IR, [/mm] da [mm] \summe_{n=1}^{\infty}\bruch{1}{n^2} [/mm] konvergiert, konvergiert auch die kleinere Summe. (Majorantenkriterium.)
Zu 2. fur x>0 wie 1)
für x<0 für alle n>N mit x<N! bilden sind die Summanden eine Nullfolge, deshalb Konvergenz nach Leibniz (alternierende Reihe. also konvergent für alle x.
Gruss leduart

Bezug
                
Bezug
Konvergenz: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 10:17 Mo 04.06.2007
Autor: eruzele

vielen Dank für die Antwort!
die 1. kann ich gut selbst nachvollziehen. die 2. verstehe ich jetzt, aber ob ich selbst drauf jemals gekommen wäre... ich habe noch eine Frage. und wie findet man Konvergenzbereich (also in welchem Integral konvergieren die Funktionen)?
danke

Bezug
                        
Bezug
Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:29 Mo 04.06.2007
Autor: eruzele

Ich glaube, ich habe es verstanden. Mit Konvergenz in diesen Bsln. ist es gemeint, in welchem Bereich x konvergiert und nicht die Funktion. z.B. bei der Aufgabe 1. x konvergiert in [mm] \((-\infty;+\infty) [/mm]. Die Funktion selbst geht aber gegen 0. Stimmt meine Interpretation?

Bezug
                                
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 15:16 Mo 04.06.2007
Autor: angela.h.b.

Hallo,

mit Konvergenzbereich ist folgendes gemeint:
aus welchem Bereich darf ich ein x einsetzen, wenn die Reihe konvergieren soll.

Wenn der Konvergenzbereich [mm] =\IR [/mm] ist, konvergiert die Reihe eben für jedes x.

Ist der Konvergenzbereich [-3,3], konvergiert die Reihe für x<-3 und x>3 nicht.

Gruß v. Angela

Bezug
                                        
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:48 Mo 04.06.2007
Autor: eruzele

herzlichen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de