www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz
Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Abschätzung
Status: (Frage) beantwortet Status 
Datum: 18:16 Di 28.07.2009
Autor: Wolfram

Aufgabe
[mm] \summe_{i=1}^{\infty} \bruch{3n \wurzel[6]{5n^{2}+3}}{(n+1)^{2} \wurzel[3]{4n^{2}+2n-1}} [/mm]

ich würde gerne wissen wie man diese folge abschätz,
da mir das nicht ganz einleuchtet wie abgeschätzt wird wäre es hilfreich wenn jemand so nett wäre und dazu noch einige rekärungen posten würde,
und vielleicht gleichzeitig an diesem beispiel erklären würde


        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 Di 28.07.2009
Autor: Marcel

Hallo Wolfram,

> [mm]\summe_{i=1}^{\infty} \bruch{3n \wurzel[6]{5n^{2}+3}}{(n+1)^{2} \wurzel[3]{4n^{2}+2n-1}}[/mm]
>  
> ich würde gerne wissen wie man diese folge abschätz,

das ist keine Folge, sondern eine Reihe (was natürlich auch eine Folge ist, nämlich die Folge ihrer Teilsummen).

>  da mir das nicht ganz einleuchtet wie abgeschätzt wird
> wäre es hilfreich wenn jemand so nett wäre und dazu noch
> einige rekärungen posten würde,
>  und vielleicht gleichzeitig an diesem beispiel erklären
> würde

Naja, ich hoffe, es geht hier nur um das Konvergenzverhalten der Reihe. Die Reihe konvergiert, wenn Du (ab einem gewissen [mm] $N\,$) [/mm] eine konvergente Majorante angeben kannst (analog: Sie divergiert bei Angabe einer entsprechenden Minorante).

Wie kann man nun "ein Gefühl" für diese Reihe bekommen?    
Wir schauen uns die Summanden an:
[mm] $$\bruch{3n \wurzel[6]{5n^{2}+3}}{(n+1)^{2} \wurzel[3]{4n^{2}+2n-1}}\,.$$ [/mm]
Sie sind alle [mm] $\ge 0,\,$ [/mm] und wir sehen, dass im Zähler "im Wesentlichen" so etwas wie [mm] "$n*n^{2/6}=n^{4/3}$" [/mm] steht, und im Nenner [mm] "$n^2*n^{2/3}=n^{8/3}$", [/mm] die Summanden sich also, wenn $n [mm] \to \infty$ [/mm]  strebt, sich wie [mm] $\text{const}*\frac{n^{4/3}}{n^{8/3}}=\frac{1}{n^{4/3}}$ [/mm] verhalten. Also versuchen wir, eine entsprechende konvergente Majorante zu bauen:
Dazu benutze z.B., dass für jedes $n [mm] \in \IN$ [/mm] gilt:
[mm] $$\bruch{3n \wurzel[6]{5n^{2}+3}}{(n+1)^{2} \wurzel[3]{4n^{2}+2n-1}}\le \bruch{3n \wurzel[6]{5n^{2}+3n^2}}{(n+1)^{2} \wurzel[3]{4n^{2}+2n-1}}\le \bruch{3*\wurzel[6]{8}\;n \wurzel[6]{n^{2}}}{n^{2} \wurzel[3]{4n^{2}}}=\frac{3*\wurzel[6]{8}}{\wurzel[3]{4}}*\frac{\wurzel[6]{n^2}}{n*\wurzel[3]{n^2}}=\frac{3*\wurzel[6]{8}}{\wurzel[3]{4}}*\frac{\wurzel[6]{n^2}}{n*\wurzel[6]{n^4}}=\frac{3*\wurzel[6]{8}}{\wurzel[3]{4}}*\frac{1}{n^{4/3}}\,.$$ [/mm]

Natürlich sollte hier die Kenntnis vorhanden sein, dass [mm] $\sum_{n=1}^\infty \frac{1}{n^\alpha}$ [/mm] (genau dann) konvergiert, wenn [mm] $\alpha [/mm] > 1$ ist. (Das folgt z.B. aus dem Cauchyschen Verdichtungssatz.)

Gruß,
Marcel

Bezug
                
Bezug
Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:14 Di 28.07.2009
Autor: Wolfram

erstmal herztlichen dank für deine antwort

nach welchem prinzip oder (algorithmus) gehst du vor gibts da sowas wie ne faustregel was man nun aus den exponenten macht, wie die vorfaktoren betrachtet werden?

Bezug
                        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 19:36 Di 28.07.2009
Autor: angela.h.b.


> nach welchem prinzip oder (algorithmus) gehst du vor

Hallo,

so ganz verstehe ich die Frage nicht, denn Marcel hat Dir sehr ausführlich die Gedanken geschildert, die er sich gemacht hat, bevor er wirklich mit der Abschätzung begonnen hat: er hat sich überlegt, daß für [mm] n\to \infty [/mm] der Summand 3 in [mm] 5n^2+3 [/mm] "nahezu unbedeutend" wird, und sich der Ausdruck [mm] 5n^2 [/mm] "ähnlich wie" [mm] n^2 [/mm] verhält.
Die anderen Ausdrücke entsprechend.

Danach hat er (das Ziel fest im Blick) passende Abschätzungen vorgenommen und dann eine Majorante gesucht.

Hier steuert man oft auf [mm] \summe\bruch{1}{n^{\alpha}}, [/mm] auf die geometrische Reihe oder (für Minoranten) die harmonische Reihe zu.

> gibts
> da sowas wie ne faustregel was man nun aus den exponenten
> macht, wie die vorfaktoren betrachtet werden?

Einen Algorithmus, der immer und bei jeder Reihe funktioniert, wirst Du nicht finden.
Am besten lernt man's durch fleißiges Üben.

Gruß v. Angela

P.S.: beachte, daß es in Marcels Antwort heißen muß ..."die Summanden sich also, wenn $ n [mm] \to \infty [/mm] $  strebt, sich wie $ [mm] \text{const}\cdot{}\frac{n^{\red{4/3}}}{n^{\red{8/3}}}=n^{\red{-}4/3} [/mm] $ verhalten"



Bezug
                                
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:03 Di 28.07.2009
Autor: Marcel

Hallo Angela,

> P.S.: beachte, daß es in Marcels Antwort heißen muß
> ..."die Summanden sich also, wenn [mm]n \to \infty[/mm]  strebt,
> sich wie
> [mm]\text{const}\cdot{}\frac{n^{\red{4/3}}}{n^{\red{8/3}}}=n^{\red{-}4/3}[/mm]
> verhalten"

danke auch hier nochmals für den Hinweis. Ich habe es editiert.

Gruß,
Marcel

Bezug
                        
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:40 Di 28.07.2009
Autor: Marcel

Hallo,

> erstmal herztlichen dank für deine antwort
>  
> nach welchem prinzip oder (algorithmus) gehst du vor gibts
> da sowas wie ne faustregel was man nun aus den exponenten
> macht, wie die vorfaktoren betrachtet werden?

wenn Du so willst, kann man sagen:
Ich habe untersucht, ob es möglich ist, dass Konvergenzverhalten der Reihe [mm] $\sum_{n=1}^\infty a_n$ [/mm] mithilfe des sogenannten Grenzwertkriteriums  ([]Satz 33.6 im Heuser, Analysis I) herauszubekommen. Die Vorgehensweise ist jedenfalls zu diesem Kriterium (bzw. zum Beweis dazu) i.W. analog.
(Ist Dir klar, wie man hier, würde man dieses Kriterium benutzen wollen, die Folge [mm] $(b_n)_n$ [/mm] wählen könnte?)

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de