Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:12 Sa 21.11.2009 | Autor: | Olga1234 |
Aufgabe | Es sei (xn)n eine reelle Folge mit Grenzwert x und k 7! nk eine injektive Abbildung1 von N nach N.
1. Zeigen Sie, dass f¨ur alle N [mm] \in \IN [/mm] ein K [mm] \in \IN [/mm] existiert, sodass [mm] n_{k} \ge [/mm] N für alle k [mm] \ge [/mm] K.
2. Zeigen Sie, dass die Folge [mm] (x_{n_{k}})_{k} [/mm] ebenfalls gegen x konvergiert.
Bemerkung: Dies zeigt, dass die Konvergenz einer Teilfolge eine Eigenschaft der Menge ihrer Glieder ist
und nicht von der Reihenfolge ihrer Aufzählung abhängt. (Diese Bemerkung gilt insbesondere f¨ur die
Folge (xn) selbst.) Die in der Definition einer Teilfolge erhobene Forderung, dass k [mm] \to n_{k} [/mm] streng monoton
wachsend sein soll, ist daher für Aussagen über ihre Konvergenz (Bolzano-Weierstraß etc.) nicht wesentlich. |
Ich versteh leider noch nicht mal, was die 1. Aussage bedeuten soll.
vllt kann mir das jemand erklären und auch einen tipp für den beweis geben.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 04:33 So 22.11.2009 | Autor: | felixf |
Hallo!
> Es sei (xn)n eine reelle Folge mit Grenzwert x und k 7! nk
> eine injektive Abbildung1 von N nach N.
Die injektive Abbildung $k [mm] \to n_k$ [/mm] kannst du ja als Folge von natuerlichen Zahlen auffassen.
> 1. Zeigen Sie, dass f¨ur alle N [mm]\in \IN[/mm] ein K [mm]\in \IN[/mm]
> existiert, sodass [mm]n_{k} \ge[/mm] N für alle k [mm]\ge[/mm] K.
Uebersetzt heisst das ja: egal wie gross du $N$ waelhst, ab einem gewissen Startindex $K$ sind alle [mm] $n_k$ [/mm] ($k [mm] \ge [/mm] K$) immer groessergleich $N$.
Wie du das beweist? Wenn es kein solches $K$ gaebe, dann gibt es unendlich viele $k$ mit [mm] $n_k [/mm] < N$ (warum?). Aber dies ist ein Widerspruch dazu, dass $k [mm] \to n_k$ [/mm] injektiv ist (warum?).
LG Felix
|
|
|
|