www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz
Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: 2 Aufgaben mit einer Klappe
Status: (Frage) beantwortet Status 
Datum: 00:23 So 14.11.2010
Autor: Michael2010

Aufgabe 1
Man zeige, dass [mm] \limes_{n\rightarrow\infty}q^{n}=0 [/mm] für alle [mm] q\in(-1,1) [/mm] gilt.
Hinweis: Ein anwenden der Bernoullichen Ungleichung auf [mm] 1+n(|q|^{-1}-1) [/mm] führt zum Ziel.

Aufgabe 2
Sei [mm] q\in\IR [/mm] mit q>1 und [mm] a_{n}:=q^{n}. [/mm] Zeigen Sie das [mm] a_{n} [/mm] gegen [mm] \infty [/mm] divergiert.

Meine Überlgeung war nun da ich keinen Ansatz über die Ungleichung habe zu zeigen das folgendes gilt:
q=1/k [mm] k\in\IR, [/mm] |k|>1
[mm] q^{n}=1/k^{n} [/mm]

Damit denke ich könnte ich doch beides zeigen. Ich zeige das [mm] k^{n} [/mm] gegen [mm] \infty [/mm] divergiert und habe damit gezeigt das beides gilt.

Fraglich ist für mich jetzt nurnoch ob ich das so machen kann und wenn dann wo ich ansätzen sollte.

LG
Michael

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz: zu 1)
Status: (Antwort) fertig Status 
Datum: 00:45 So 14.11.2010
Autor: schachuzipus

Hallo Michael2010 und [willkommenmr],




> Man zeige, dass [mm]\limes_{n\rightarrow\infty}q^{n}=0[/mm] für
> alle [mm]q\in(-1,1)[/mm] gilt.
>  Hinweis: Ein anwenden der Bernoullichen Ungleichung auf
> [mm]1+n(|q|^{-1}-1)[/mm] führt zum Ziel.
>  Sei [mm]q\in\IR[/mm] mit q>1 und [mm]a_{n}:=q^{n}.[/mm] Zeigen Sie das [mm]a_{n}[/mm]
> gegen [mm]\infty[/mm] divergiert.
>  Meine Überlgeung war nun da ich keinen Ansatz über die
> Ungleichung habe zu zeigen das folgendes gilt:
>  q=1/k [mm]k\in\IR,[/mm] |k|>1
>  [mm]q^{n}=1/k^{n}[/mm]

Hmm, wegen [mm]|q|<1[/mm] ist [mm]\frac{1}{|q|}>1[/mm]

Schreibe also [mm]\frac{1}{|q|}=:1+x[/mm] mit einem [mm]x>0[/mm]

Dann ist [mm]|q|^n=\frac{1}{(1+x)^n}[/mm]

Nun die Bernoulli-Ungleichung auf [mm](1+x)^n[/mm] anwenden: [mm](1+x)^n\ge 1+nx[/mm]

Also [mm]|q|^n=\frac{1}{(1+x)^n}\le\frac{1}{1+nx}\le\frac{1}{nx}[/mm]

Und was treibt das für [mm]n\to\infty[/mm]

Bedenke, dass andererseits für alle [mm]q\in(-1,1)[/mm] gilt [mm]|q|^n\ge 0[/mm]

...


>  
> Damit denke ich könnte ich doch beides zeigen. Ich zeige
> das [mm]k^{n}[/mm] gegen [mm]\infty[/mm] divergiert und habe damit gezeigt
> das beides gilt.
>  
> Fraglich ist für mich jetzt nurnoch ob ich das so machen
> kann und wenn dann wo ich ansätzen sollte.
>  
> LG
>  Michael
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß

schachuzipus


Bezug
                
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:56 So 14.11.2010
Autor: Michael2010

danke für die schnelle Antwort hat gut geholfen =)

lg
Michael

Bezug
        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 01:02 So 14.11.2010
Autor: schachuzipus

Hallo nochmal,



>  Sei [mm]q\in\IR[/mm] mit q>1 und [mm]a_{n}:=q^{n}.[/mm] Zeigen Sie das [mm]a_{n}[/mm]  gegen [mm]\infty[/mm] divergiert.

Hier könntest du mal versuchen zu zeigen, dass [mm](a_n)[/mm] unbeschränkt ist, also ein beliebiges [mm]M\in\IR^+[/mm] stets überschreitet.

Zeige also [mm]\forall M\in\IR^+ \ \exists N\in\IN: |q|^n \ > \ M[/mm] für alle [mm]n\ge N[/mm]

Gruß

schachuzipus


Bezug
                
Bezug
Konvergenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:18 So 14.11.2010
Autor: Michael2010

Danke, denke das werde ich schaffen =)

lg
Michael

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de