Konvergenz < Numerik < Hochschule < Mathe < Vorhilfe
|
Hi zusammen,
zu zeigen ist, wenn [mm]\{x^k\}[/mm] eine Q-überlinear gegen [mm]x^\*[/mm] konvergente Folge ist, d.h. wenn gilt: [mm]\|x^{k+1}-x^\*\|\leq\varepsilon_k\|x^k-x^\*\|[/mm] mit [mm]\limes_{k\rightarrow\infty}\varepsilon_k=0[/mm], dann folgt
[mm]\limes_{k\rightarrow\infty}\bruch{\|x^{k+1}-x^k\|}{\|x^k-x^\*\|}=1[/mm]
Also ich hab mir gedacht: Dreiecksungleichung und dann ein bißl rumwurschteln, allerdings komm ich dann auf sowas
[mm]\|x^{k+1}-x^\*\|\leq\|x^{k+1}-x^k\|+\|x^k-x^\*\|[/mm]
[mm]\Leftrightarrow \bruch{\|x^{k+1}-x^\*\|}{\|x^k-x^\*\|}\leq\bruch{\|x^{k+1}-x^k\|}{\|x^k-x^\*\|}+1[/mm]
[mm]\Leftrightarrow \bruch{\|x^{k+1}-x^k\|}{\|x^k-x^\*\|}\geq\bruch{\|x^{k+1}-x^\*\|}{\|x^k-x^\*\|}-1[/mm]
Nu steht schon links der Quotient, für den ich gern im Grenzwert 1 hätte und der Quotient rechts ist nach Voraussetzung [mm]\leq\varepsilon_k[/mm], verschwindet also im Grenzwert. Nur die Relationen und das Vorzeichen beunruhigen mich ein wenig... seh grad irgendwie nicht weiter, oder ist gar der Ansatz falsch.
Vielen Dank für die Hilfe
28
|
|
|
|
Hallo!
Eigentlich brauchst du eine Folge, die von oben gegen 1 konvergiert, und eine, die von unten gegen 1 konvergiert. Nur dann kannst du die Konvergenz der eingeschlossenen Folge folgern.
Mit Hilfe von [mm] $\|x^{k+1}-x^\*\|\ge\|x^{k+1}-x^k\|-\|x^k-x^\*\|$ [/mm] erhältst du
[mm] $\bruch{\|x^{k+1}-x^k\|}{\|x^k-x^\*\|}\le\epsilon_k+1$.
[/mm]
Benutzt du [mm] $\|x^{k+1}-x^\*\|\ge\|x^k-x^\*\|-\|x^{k+1}-x^k\|$, [/mm] so erhältst du
[mm] $1-\epsilon_k\le \bruch{\|x^{k+1}-x^k\|}{\|x^k-x^\*\|}$.
[/mm]
Das ergibt die Konvergenz.
Gruß, banachella
|
|
|
|