www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Konvergenz
Konvergenz < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:44 So 26.06.2011
Autor: al3pou

Aufgabe
Untersuchen Sie, ob die folgenden uneigentlichen Integrale konvergieren und berechnen Sie gegebenenfalls ihren Wert:

(a) [mm] \integral_{0}^{1}{\bruch{2x}{(x^{2}-1)^{2}} dx} [/mm]

Hallo,

ich habe das noch nie gemacht und ich bin mir nicht wirklich sicher, wie das geht. Also wie würde ich das jetzt machen?  Ich weiß, dass eine Reihe zu dem Integral als konvergente Majorante gesehen werden kann, aber was genau müsse ich nun machen?

LG

        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 So 26.06.2011
Autor: kamaleonti


> Untersuchen Sie, ob die folgenden uneigentlichen Integrale
> konvergieren und berechnen Sie gegebenenfalls ihren Wert:
>  
> (a) [mm]\integral_{0}^{1}{\bruch{2x}{(x^{2}-1)^{2}} dx}[/mm]
>  
> Hallo,
>  
> ich habe das noch nie gemacht und ich bin mir nicht
> wirklich sicher, wie das geht. Also wie würde ich das
> jetzt machen?  Ich weiß, dass eine Reihe zu dem Integral
> als konvergente Majorante gesehen werden kann, aber was
> genau müsse ich nun machen?

In diesem Fall lässt sich das Integral ganz gut unbestimmt lösen.
Substituiere dazu [mm] u:=x^2-1. [/mm]

Dann kommt es zu den Grenzen. Die Null macht offenbar keine Probleme, bei 1 gibt es schon Probleme. Wenn existent gilt daher:

      [mm] \int_0^1 \frac{2x}{(x^2-1)^2}dx=\lim_{t\to1} \int_0^t \frac{2x}{(x^2-1)^2}dx [/mm]


LG

Bezug
                
Bezug
Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:56 So 26.06.2011
Autor: al3pou

ehm, okay, danke, aber so richtig schlau werde ich daraus nicht. Kannst du das vllcht irgendwie anders erklären?

LG

Bezug
                        
Bezug
Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 15:06 So 26.06.2011
Autor: schachuzipus

Hallo al3pou,


> ehm, okay, danke, aber so richtig schlau werde ich daraus
> nicht.

Woraus nicht?

Das ist keine präzise Frage.

Einzig die obere Grenze [mm]x=1[/mm] macht Stress, da dort der Nenner des Integranden nicht definiert ist.

Daher wählst du eine feste Obergrenze [mm]t[/mm] mit [mm]0
Du wirst sehen, dass das Integral divergiert!

Du könntest auch versuchen, direkt eine divergente Minorante zu deinem Ausgangsintegral zu finden, also ein "kleineres" Integral, dass in den Grenzen 0-1 (bekanntermaßen oder für das man es sehr leicht zeigen kann) divergiert

> Kannst du das vllcht irgendwie anders erklären?
>  
> LG

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de