www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz + Grenzwert
Konvergenz + Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz + Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:19 So 18.11.2012
Autor: a93303

Aufgabe
Prüfen Sie nach, ob an definiert durch [mm] a_{n+1} [/mm] = [mm] a^{4}_{n}, [/mm] mit a0 = [mm] \bruch{1}{2} [/mm] konvergiert, und geben Sie im Falle der Konvergenz den Grenzwert an.

Hallo,

ich hoffe mir kann hier jemand helfen.
Ich habe diese Aufgabe bekommen und habe keine Idee, wie ich anfangen soll.
Konvergenz und Grenzwert ist klar, Folgen auf Konvergenz prüfen klappt auch aber was ich hier anstellen soll bzw. wie der Ansatz ist, ist mir nicht klar :(

Vielen Dank schon mal!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz + Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 18:29 So 18.11.2012
Autor: Marcel

Hallo,

> Prüfen Sie nach, ob an definiert durch [mm]a_{n+1}[/mm] =
> [mm]a^{4}_{n},[/mm] mit a0 = [mm]\bruch{1}{2}[/mm] konvergiert, und geben Sie
> im Falle der Konvergenz den Grenzwert an.
>  Hallo,
>  
> ich hoffe mir kann hier jemand helfen.
>  Ich habe diese Aufgabe bekommen und habe keine Idee, wie
> ich anfangen soll.
>  Konvergenz und Grenzwert ist klar, Folgen auf Konvergenz
> prüfen klappt auch aber was ich hier anstellen soll bzw.
> wie der Ansatz ist, ist mir nicht klar :(

da gibt's viele Möglichkeiten. Du kannst mal, und das solltest Du auch tun,
die Folge in expliziter Form hinschreiben (dabei bitte die explizite Form
auch beweisen)!

Alternativ:
Zeige etwa, dass $0 [mm] \le a_n \le (1/2)^n$ [/mm] gilt ("schlimmstenfalls" per
Induktion).

Auch dann bist Du schnell fertig.

"Ganz böse" alternativ (weil das eigentlich viel zu umständlich ist):
Zeige, dass die Folge durch [mm] $0\,$ [/mm] nach unten beschränkt ist und (streng)
monoton fallend ist. Daraus folgt die Konvergenz der Folge.

Ist [mm] $a\,$ [/mm] dann der Grenzwert, so folgt aus [mm] $a_{n+1}=a_n^4$ [/mm] wegen der
Eindeutigkeit des Grenzwertes dann, dass
[mm] $$a=a^4$$ [/mm]
gelten muss. Bedenkt man nun, dass die Folgenglieder alle sicher [mm] $\le [/mm] 1/2$
bleiben, so ist der Grenzwert [mm] $a\,$ [/mm] damit klar bestimmbar.

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de