www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz - Warum und wie?
Konvergenz - Warum und wie? < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz - Warum und wie?: Erkärung
Status: (Frage) beantwortet Status 
Datum: 17:31 Sa 24.01.2009
Autor: PirmA

Aufgabe
Untersuchen Sie die Folgen [mm] a_{n} [/mm]   n [mm] \varepsilon [/mm] N auf Konvergenz und bestimmen Sie gegebenfalls den Grenzwert.
a)  [mm] a_{0}=0, a_{n+1}=\bruch{3}{4}a_{n}+\bruch{1}{4} [/mm]

Also meine Fragen ist, wie mach ich das??? Falls man irgendetwas erweitern muss, warum macht man das und woran erkennt man mit welchem Term man die Aufgabe erweiterm muss (hab ma irgendwo gelesen dass man das muss, bin mir aber nicht sicher).

Am besten eine ausführliche Lösung mit allen Rechenschritten und am besten noch ne gute Erklärung  :P
Ist viel verlangt wäre euch aber echt dankbar. Die Klausur steht bald an :(


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz - Warum und wie?: Antwort
Status: (Antwort) fertig Status 
Datum: 17:39 Sa 24.01.2009
Autor: Al-Chwarizmi


> Untersuchen Sie die Folgen [mm]a_{n}[/mm]   n [mm]\varepsilon[/mm] N auf
> Konvergenz und bestimmen Sie gegebenfalls den Grenzwert.
>  a)  [mm]a_{0}=0, a_{n+1}=\bruch{3}{4}a_{n}+\bruch{1}{4}[/mm]
>  Also
> meine Fragen ist, wie mach ich das??? Falls man irgendetwas
> erweitern muss, warum macht man das und woran erkennt man
> mit welchem Term man die Aufgabe erweiterm muss (hab ma
> irgendwo gelesen dass man das muss, bin mir aber nicht
> sicher).
>  
> Am besten eine ausführliche Lösung mit allen
> Rechenschritten und am besten noch ne gute Erklärung  :P
>  Ist viel verlangt wäre euch aber echt dankbar. Die Klausur
> steht bald an :(


Hallo Cornelius,

so ein bißchen etwas erwarten wir zunächst von dir
selber. Du kannst doch einmal ein paar Glieder der
Folge berechnen und eine Vermutung aufstellen, ob
die Folge einen Grenzwert haben könnte oder nicht.
Du kannst dir auch folgende Überlegung machen:
falls es einen Grenzwert g gibt/gäbe, dann müsste
für grosse n der Wert von [mm] a_n [/mm] sehr nahe bei g liegen.
Daraus kann man eine Gleichung für g erhalten.

LG

Bezug
                
Bezug
Konvergenz - Warum und wie?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:21 So 25.01.2009
Autor: PirmA

Also ich würde vermuten dass es keinen Grenzwert gibt, da der Bruch [mm] \bruch{3}{4}a [/mm] gegen Unendlich geht. Den Bruch  [mm] +\bruch{1}{4} [/mm] kann man vernachlässigen, weil er nur sehr kleine ist und keine Variabel besitzt. Aber ich könnte es nicht aufschreiben, geschweige denn mathematisch ausdrücken.

Bezug
                        
Bezug
Konvergenz - Warum und wie?: Hinweise
Status: (Antwort) fertig Status 
Datum: 12:25 So 25.01.2009
Autor: Loddar

Hallo PirmA,

[willkommenmr] !!


Das stimmt so nicht. Schließlich wird durch den Term [mm] $\bruch{3}{4}*a_{\red{n}}$ [/mm] das vorherige Glied zunächst verkleinert!

Untersuche, ob diese Folge sowohl monoton als auch beschränkt ist (z.B. mittels vollständiger Induktion). Daraus folgt dann unmittelbar die Konvergenz.

Den Grenzwert $g_$ erhält man über den Ansatz $g \ := \ [mm] \limes_{n\rightarrow\infty}a_n [/mm] \ = \ [mm] \limes_{n\rightarrow\infty}a_{n+1}$ [/mm] .


Gruß
Loddar


Bezug
                                
Bezug
Konvergenz - Warum und wie?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:19 So 25.01.2009
Autor: PirmA

Ok danke schonmal soweit. Aber wiebekomm ich denn [mm] \limes_{n\rightarrow\infty}a_{n} [/mm] raus?
Muss ich einfach [mm] \bruch{3}{4}a_{n+1}=\bruch{3}{4}a_{n} [/mm] rechnen?

Der Limes heisst doch läuft zu, oder konvergiert zu, oder?

Bezug
                                        
Bezug
Konvergenz - Warum und wie?: Bestimmungsgleichung
Status: (Antwort) fertig Status 
Datum: 13:31 So 25.01.2009
Autor: Loddar

Hallo PirmA!


Die Bestimmungsgleichung für den gesuchten Grenzwert $g_$ ergibt sich unmittelbar aus der rekursiven Folgenvorschrift:
[mm] $$a_{n+1} [/mm] \ = \ [mm] \bruch{3}{4}*a_n+\bruch{1}{4}$$ [/mm]
[mm] $$\Rightarrow [/mm] \ \ g \ = \ [mm] \bruch{3}{4}*g+\bruch{1}{4}$$ [/mm]

Dies gilt aber nur, wenn Du bereits nachgewiesen hast, dass diese Folge auch wirklich konvergiert (siehe meine obige Antwort).


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de