www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz/Divergenz
Konvergenz/Divergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz/Divergenz: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 00:21 Do 16.06.2011
Autor: Mandy_90

Aufgabe
Sei [mm] \summe_{n=1}^{\infty} a_{n} [/mm] eine konvergent Reihe positiver Zahlen und [mm] r_{n}:=\summe_{i=n}^{\infty} a_{i} [/mm] das n-te Restglied. Beweisen [mm] Sie:\summe_{n=1}^{\infty} \bruch{a_{n}}{\wurzel{r_{n}}} [/mm] ist konvergent und [mm] \summe_{n=1}^{\infty} \bruch{a_{n}}{r_{n}} [/mm] ist nicht konvergent.

Guten Abend,

ich komme bei dieser Aufgabe nicht mehr weiter und habe so angefangen:

[mm] 1.\summe_{n=1}^{\infty} \bruch{a_{n}}{r_{n}}: [/mm] Ich habe zwei Ansätze versucht.
1.Quotientenkriterium: Sei [mm] x_{n}=\bruch{a_{n}}{r_{n}}.Dann [/mm] ist

[mm] \bruch{x_{n+1}}{x_{n}}=...=\bruch{a_{n+1}*r_{n}}{r_{n+1}*a_{n}}=\bruch{a_{n+1}*(\summe_{i=n}^{\infty} a_{i})}{(\summe_{i=n+1}^{\infty} a_{i})*a_{n}}=\bruch{a_{n+1}*a_{n}+a_{n+1}*(a_{n+1}+a_{n+2}+...)}{a_{n+1}*a_{n}+a_{n}*(a_{n+2}+a_{n+3}...)} [/mm]
Und jetzt müsste ich zeigen, dass das [mm] \ge [/mm] 1 ist, aber da bin ich nicht mehr weitergekommen.

2.Ansatz: Ich zeige dass [mm] \limes_{n\rightarrow\infty} \bruch{a_{n}}{r_{n}} \not=0 [/mm] ist, aber da kann irgendetwas nicht stimmen, denn ich komme auf den grenzwert 0.


Zu [mm] \summe_{n=1}^{\infty} \bruch{a_{n}}{\wurzel{r_{n}}}: [/mm]

Da die Reihe [mm] \summe_{n=1}^{\infty} a_{n} [/mm] konvergent ist, folgt schonmal, dass [mm] a_{n} [/mm] gegen Null konvergiert. Ich hab jetzt versucht die verschiedenen Konvergenzkriterien zu verwenden,aber keines hat mir weitergeholfen.
Wie gehe ich denn am besten an die Aufgabe heran?

Vielen Dank
lg

        
Bezug
Konvergenz/Divergenz: 1. Reihe
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:11 Do 16.06.2011
Autor: kamaleonti

Moin Mandy,
> Sei [mm]\summe_{n=1}^{\infty} a_{n}[/mm] eine konvergent Reihe
> positiver Zahlen und [mm]r_{n}:=\summe_{i=n}^{\infty} a_{i}[/mm] das
> n-te Restglied. Beweisen [mm]Sie:\summe_{n=1}^{\infty} \bruch{a_{n}}{\wurzel{r_{n}}}[/mm] ist konvergent.

Es ist [mm] \sqrt{r_n}=\sqrt{\summe_{i=n}^{\infty} a_{i}}\geq\sqrt{a_n}. [/mm]

Also gilt [mm] \frac{a_n}{\sqrt{r_n}}\leq\frac{a_n}{\sqrt{a_n}}=\sqrt{a_n}. [/mm]
Also ist die Reihe [mm] \sum_{n=1}^\infty\sqrt{a_n} [/mm] eine Majorante von [mm] \summe_{n=1}^{\infty} \bruch{a_{n}}{\wurzel{r_{n}}}. [/mm]

Versuche einmal Konvergenz von dieser Majorante zu zeigen.
EDIT: Sorry, dass funktioniert natürlich nicht. Gegenbeispiel: [mm] \sum_{n=1}^\infty\frac{1}{n^2} [/mm]

LG

Bezug
        
Bezug
Konvergenz/Divergenz: Nachfrage
Status: (Frage) beantwortet Status 
Datum: 10:02 So 19.06.2011
Autor: statler

Hallo allerseits,
hat hier denn niemand einen zündenden Gedanken? Es mag Mandy nicht mehr helfen, aber mich würde auch interessieren, mit welchem Dreh man dieser Aufgabe beikommt. Also Epsilontiker, zeigt euch!
Gruß aus HH-Harburg
Dieter

Bezug
                
Bezug
Konvergenz/Divergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 20:02 So 19.06.2011
Autor: mathfunnel

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Dieter!

> Hallo allerseits,
>  hat hier denn niemand einen zündenden Gedanken? Es mag
> Mandy nicht mehr helfen, aber mich würde auch
> interessieren, mit welchem Dreh man dieser Aufgabe
> beikommt. Also Epsilontiker, zeigt euch!
>  Gruß aus HH-Harburg
>  Dieter

$\sum\limits_{i=n}^{n+m} \frac{a_i}{r_i} \geq \frac{1} r_{n}}\sum\limits_{i=n}^{n+m} a_i = \frac{r_{n} -r_{n+m+1}}{r_{n}} = 1-\frac{r_{n+m+1}}{r_{n}}$ ($>\frac{1}{2}$ für ein gewisses $m$).

Dass $\sum\limits_{i=1}^{\infty} \frac{a_i}{\sqrt{r_i}}$ konvergent ist, erkennt man an den Ungleichungen

$\frac{a_i}{\sqrt{r_i}} < \frac{a_i}{\sqrt{\zeta_i}} = 2(\sqrt{r_i}-\sqrt{r_{i+1}})$ mit einem gewissen $\zeta_i \in (r_{i+1},r_i)$ (Mittelwertsatz der
Differentialrechnung auf $2\sqrt{x}$) und an der Konvergenz der Reihe $\sum\limits_{i=1}^{\infty} 2(\sqrt{r_i}-\sqrt{r_{i+1}})$.

LG mathfunnel


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de