www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz Funktion
Konvergenz Funktion < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:05 Do 19.10.2006
Autor: Phecda

hi
ich habe die Funktion [mm] f_{n}=nxe^{-nx} [/mm] für 0 größergleich x kleinergleich 1

mit dem quotientenkriterium bekommt man (n+1)e^(-x)/n
somit gilt, dass die funkionsreihe konvergiert. nur wie findet man (auch generell) heraus gegen welche funktion?
Und was meint man damit wenn man fragt ob die Konvergenz "gleichmäßig" ist?
danke
mfg phecda

        
Bezug
Konvergenz Funktion: Hilfestellung und Korrektur
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:48 Fr 20.10.2006
Autor: DesterX

Hallo!

Achtung, das Qoutienkriterium sagt, dass [mm] \limes_{n\rightarrow\infty} \bruch{a_{n+1}}{a_n}= [/mm] q < 1 sein muss, damit [mm] a_n [/mm] konvergiert...hier aber gilt:


[mm] \limes_{n\rightarrow\infty} \bruch{(n+1)*e^{-x}}{n} [/mm] = 1

Dh, das QR liefert dir keine Aussage, jedoch gilt:

[mm] \limes_{n\rightarrow\infty} f_n [/mm] =  [mm] \limes_{n\rightarrow\infty} \bruch{nx}{e^{nx}} [/mm] = 0

Also hast du eine Grenzfunktion f(x)=0 gefunden

Grüße,
DesterX

Bezug
        
Bezug
Konvergenz Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 10:40 Fr 20.10.2006
Autor: Gonozal_IX

Hallo Phecda,

es heisst, eine Funktion konvergiert punktweise gegen eine andere, wenn gilt:

[mm]\forall_{\varepsilon >0} \forall_x \exists_{n_0} \forall_{n \ge n_0}: |f_n - f| < \varepsilon [/mm] (1)

Die Definition dürfte dir, aus der "normalen" Grenzwertdefinition für Folgen bekannt vorkommen, es ist letztendlich auch nichts anderes.

Gleichmäßige Konvergenz liegt vor, wenn gilt:

[mm]\forall_{\varepsilon >0} \exists_{n_0} \forall_x \forall_{n \ge n_0}: |f_n - f| < \varepsilon [/mm] (2)

Wie du siehst, wurden hier die Quantoren für das x und das [mm] n_0 [/mm] einfach vertauscht. Somit bedeutet das anschaulich, daß das zu findende [mm] n_0 [/mm] nicht mehr von der Wahl des x abhängig ist.


Einen Kandidaten für den punktweisen Grenzwert f findest du wie folgt: [mm]f(x) := \limes_{n\rightarrow\infty}f_n(x)[/mm].

D.h. du guckst für alle x, was da für ein Grenzwert rauskommt und definierst so genau deine Grenzfunktion. Dann zeigst du anhand der Definition, daß es sich um einen Grenzwert (bzw. glm. Grenzwert) handelt.

Um zu zeigen, daß eine Funktion ein nicht-glm. Grenzwert ist, müsstest du erst zeigen, das (1) gilt und dann, daß (2) nicht gilt.

Gruß,
Gono.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de