www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz Grenzwert
Konvergenz Grenzwert < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:35 Di 03.02.2009
Autor: hase-hh

Aufgabe
Aufgabe 1

Zeigen Sie mithilfe der Definition des Grenzwertes, dass

[mm] \limes_{n\rightarrow\infty} \bruch{5n-1}{7n+9} [/mm] = [mm] \bruch{5}{7} [/mm]

gilt.

Aufgabe 2

Zeigen Sie mittels der Definition der Konvergenz, dass die Folge

[mm] ((-1)^n [/mm] + [mm] \bruch{1}{n}) [/mm]  n=1  bis [mm] \infty [/mm]  

nicht konvergiert.

Moin,

hier frage ich nach dem Formalismus. Wie muss ich das Ganze - laut Aufgabenstellung - mittels der Definition von Grenzwert bzw. Konvergenz
aufschreiben?

a) Ich könnte z.b.   n aus Zähler und Nenner ausklammern und erhalte [mm] \bruch{5}{7}. [/mm]

b) Hier kann ich sehen, dass die Folge alterniert; d.h. für große n die Werte
-1 und 1 annimmt.

Aber man soll ja die Definitionen verwenden???

Danke & Gruß




        
Bezug
Konvergenz Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 21:40 Di 03.02.2009
Autor: abakus


> Aufgabe 1
>  
> Zeigen Sie mithilfe der Definition des Grenzwertes, dass
>  
> [mm]\limes_{n\rightarrow\infty} \bruch{5n-1}{7n+9}[/mm] =
> [mm]\bruch{5}{7}[/mm]
>  
> gilt.
>  
> Aufgabe 2
>  
> Zeigen Sie mittels der Definition der Konvergenz, dass die
> Folge
>
> [mm]((-1)^n[/mm] + [mm]\bruch{1}{n})[/mm]  n=1  bis [mm]\infty[/mm]  
>
> nicht konvergiert.
>  Moin,
>  
> hier frage ich nach dem Formalismus. Wie muss ich das Ganze
> - laut Aufgabenstellung - mittels der Definition von
> Grenzwert bzw. Konvergenz
> aufschreiben?
>  
> a) Ich könnte z.b.   n aus Zähler und Nenner ausklammern
> und erhalte [mm]\bruch{5}{7}.[/mm]
>
> b) Hier kann ich sehen, dass die Folge alterniert; d.h. für
> große n die Werte
> -1 und 1 annimmt.
>  
> Aber man soll ja die Definitionen verwenden???
>  
> Danke & Gruß


Grenzwert:  Ab einem bestimmten n liegen alle Folgenglieder in jeder (noch so kleinen) Epsilon-Umgebung. Offensichtlich liegen aber unendlich viele Folgenglieder (nämlich jedes zweite) außerhalb von kleinen Epsilon-Umgebungen der Zahlen -1 bzw. 1.
Gruß Abakus

>  
>
>  


Bezug
        
Bezug
Konvergenz Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 21:49 Di 03.02.2009
Autor: schachuzipus

Hallo Wolfgang,

zu Aufgabe 1

> Aufgabe 1
>  
> Zeigen Sie mithilfe der Definition des Grenzwertes, dass
>  
> [mm]\limes_{n\rightarrow\infty} \bruch{5n-1}{7n+9}[/mm] =
> [mm]\bruch{5}{7}[/mm]
>  
> gilt.
>  

> hier frage ich nach dem Formalismus. Wie muss ich das Ganze
> - laut Aufgabenstellung - mittels der Definition von
> Grenzwert bzw. Konvergenz
> aufschreiben?
>  
> a) Ich könnte z.b.   n aus Zähler und Nenner ausklammern
> und erhalte [mm]\bruch{5}{7}.[/mm]
>
> b) Hier kann ich sehen, dass die Folge alterniert; d.h. für
> große n die Werte
> -1 und 1 annimmt.
>  
> Aber man soll ja die Definitionen verwenden???
>  
> Danke & Gruß
>  

Die formale [mm] $\varepsilon$-Definition [/mm] kennst du?!

Gib dir ein beliebiges [mm] $\varepsilon>0$ [/mm] vor, dann musst das berüchtigte [mm] $n_0$ [/mm] bestimmen, so dass für alle [mm] $n\ge n_0$ [/mm] gilt, dass [mm] $|a_n-a|<\varepsilon$ [/mm]

Es kommt also darauf an, in einer Nebenrechnung den Betrag [mm] $\left|\frac{5n-1}{7n+9}-\frac{5}{7}\right|$ [/mm] abzuschätzen.

Dazu mache erstmal gleichnamig, dann kürzt sich so einiges weg, die Betragstriche kannst du dann auch vergessen.

Es bleibt [mm] $\frac{52}{7(7n+9)}$ [/mm]

Das soll [mm] $<\varepsilon$ [/mm] sein, also [mm] $\frac{52}{7(7n+9)}\overset{!}{<}\varepsilon$ [/mm]

Löse das nach n auf und du hast dein [mm] $n_0$ [/mm] konstruiert

Danach nimmst du das Schönschreibpapier und fängst an:

"Sei [mm] $\varepsilon>0$, [/mm] wähle [mm] $n_0:=...$, [/mm] dann gilt für alle [mm] $n\ge n_0$ [/mm] (dann die Abschätzungskette)"

LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de