www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz Reihe
Konvergenz Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz Reihe: Denkanstoß
Status: (Frage) beantwortet Status 
Datum: 12:41 Do 19.04.2012
Autor: erha06

Aufgabe
Folgende Reihe ist auf Konvergenz zu untersuchen:

[mm] $\summe_{k=1}^{\infty} \bruch {k}{k^2+1}$ [/mm]

Hallo ihr alle,

ich brauche einen Tipp für diese Aufgabe. Ich habe es bereits mit dem Quotientenkriterium versucht, jedoch komme ich, wenn ich den Limes bilde auf 1, wodurch dann das Quotientenkriterium leider nicht greift...

Danke für eure Hilfe
erha06


        
Bezug
Konvergenz Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:53 Do 19.04.2012
Autor: fred97


> Folgende Reihe ist auf Konvergenz zu untersuchen:
>  
> [mm]\summe_{k=1}^{\infty} \bruch {k}{k^2+1}[/mm]
>  Hallo ihr alle,
>  
> ich brauche einen Tipp für diese Aufgabe. Ich habe es
> bereits mit dem Quotientenkriterium versucht, jedoch komme
> ich, wenn ich den Limes bilde auf 1, wodurch dann das
> Quotientenkriterium leider nicht greift...
>  
> Danke für eure Hilfe
>  erha06
>  


Finde a>0 so, dass [mm] \bruch{k}{k^2+1} \ge \bruch{a}{k} [/mm]  für alle k.

Minorantenkriterium.

FRED

Bezug
                
Bezug
Konvergenz Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:10 Do 19.04.2012
Autor: erha06

Aufgabe
$ [mm] \summe_{k=1}^{\infty} \bruch {k}{k^3+1} [/mm] $

Ok, danke:
$ [mm] \bruch{k}{k^2+1}>\bruch{k}{k^2+k^2}=0,5*\bruch{k}{k^2} [/mm] =0,5 [mm] *\bruch{1}{k}$ [/mm] für alle k [mm] $\geq [/mm] $ 1.

Das gesuchte a ist also 0,5.

Ich hätte gedacht, dass die Reihe konvergiert, nicht, dass sie divergiert... Gibt es allgemein einen Trick, Divergenz zu sehen? (Außer, dass wenn die Folge keine Nullfolge ist, dass dann die Reihe divergiert.)

Ich habe nämlich noch eine weitere Reihe (s. oben) mit der ich Probleme habe... Bei dieser sagt zumindest Wolfram|Alpha, dass sie konvergiert :), ich finde aber keine Reihe, mit der ich das Majorantenkriterium anwenden könnte und das Quotientenkriterium greift wieder nicht.

Bezug
                        
Bezug
Konvergenz Reihe: richtig abgeschätzt
Status: (Antwort) fertig Status 
Datum: 19:29 Do 19.04.2012
Autor: Loddar

Hallo erha!


Deine Abschätzung ist richtig. [ok]

Was Du nun mit dem a meinst, erschließt sich mir nicht. Einen entsprechenden Wert sind bei Majoranten- und Minorantenkriterium nicht notwendig, wie z.B. beim Quotientenkriterium.

Anosnsten gilt: mit Übung "sieht" man auch, ob eine Reihe eher divergiert oder konvergiert.
Im Zweifelsfalle sind halt zwei Rechnungen durchzuführen.


Gruß
Loddar


Bezug
                        
Bezug
Konvergenz Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 08:47 Fr 20.04.2012
Autor: fred97


> [mm]\summe_{k=1}^{\infty} \bruch {k}{k^3+1}[/mm]

Ja, was ist denn jetzt los ?

Oben war von



$ [mm] \summe_{k=1}^{\infty} \bruch {k}{k^2+1} [/mm] $


die Rede, und nun steht da

[mm]\summe_{k=1}^{\infty} \bruch {k}{k^3+1}[/mm]

????

Die erste Reihe divergiert, die zweite konvergiert.

FRED


>  Ok, danke:
>  [mm]\bruch{k}{k^2+1}>\bruch{k}{k^2+k^2}=0,5*\bruch{k}{k^2} =0,5 *\bruch{1}{k}[/mm]
> für alle k [mm]\geq[/mm] 1.
>  
> Das gesuchte a ist also 0,5.
>  
> Ich hätte gedacht, dass die Reihe konvergiert, nicht, dass
> sie divergiert... Gibt es allgemein einen Trick, Divergenz
> zu sehen? (Außer, dass wenn die Folge keine Nullfolge ist,
> dass dann die Reihe divergiert.)
>  
> Ich habe nämlich noch eine weitere Reihe (s. oben) mit der
> ich Probleme habe... Bei dieser sagt zumindest
> Wolfram|Alpha, dass sie konvergiert :), ich finde aber
> keine Reihe, mit der ich das Majorantenkriterium anwenden
> könnte und das Quotientenkriterium greift wieder nicht.


Bezug
                                
Bezug
Konvergenz Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:27 Fr 20.04.2012
Autor: erha06


> > [mm]\summe_{k=1}^{\infty} \bruch {k}{k^3+1}[/mm]
>  
> Ja, was ist denn jetzt los ?
>  
> Oben war von
>  
>
>
> [mm]\summe_{k=1}^{\infty} \bruch {k}{k^2+1}[/mm]
>  
>
> die Rede, und nun steht da
>  
> [mm]\summe_{k=1}^{\infty} \bruch {k}{k^3+1}[/mm]
>  
> ????
>  

Das war eine weitere Reihe. ("Ich habe nämlich noch eine weitere Reihe (s. oben) mit der ich Probleme habe..."). Dieses Problem hat sich mittlerweile allerdings von selbst gelöst. Ich hätte wohl lieber einen neuen Thread aufgemacht, das hätte weniger verwirrt.

Danke für eure Hilfe!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de