www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Konvergenz Zufallsvariablen
Konvergenz Zufallsvariablen < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz Zufallsvariablen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:16 Mo 14.11.2011
Autor: Faithless

Aufgabe
Es seien [mm] X_n, [/mm] X, [mm] Y_n [/mm] und Y [mm] \IR^d-wertige [/mm] Zufallsvariablen, mit
[mm] X_n \to [/mm] X, [mm] Y_n \to [/mm] Y, jeweils in Verteilung für n [mm] \to \infty [/mm]
Außerdem sei für jedes n [mm] \in \IN x_n [/mm] unabhängig von [mm] Y_n [/mm] und X unabhängig von Y. Zeigen Sie: Für n [mm] \to \infty [/mm] gilt
a) [mm] (X_n, Y_n) \to [/mm] (X,Y)
b) [mm] (X_n, X_n) \to [/mm] (X,X)

Hinweis: Stetigkeitssatz von Lévy

also zuerst mal hab ich grad keine Ahnung, welche Konvergenz da überhaupt zu zeigen ist. das is die erste frage :D

allerdings hilft mir die antwort wahrscheinlich auch nicht weiter, einen gescheiten ansatz zu finden.
ich hab überlegt die charakteristische funktion [mm] \phi_{(X_n,Y_n)} [/mm] (sollte eigentlich ein kleines phi sein, aber find ich grad nicht) zu gehen, klingt ja auch sinnvoll mit dem hinweis, aber was tu ich damit dann?
feststellen, dass die charakteristische funktion für n [mm] \to \infty [/mm] gegen die von (X,Y) konvergiert?

oder bin ich da grad komplett auf dem holzweg?

ich hoffe mal da steigt einer durch was ich meine :D
danke schonmal

        
Bezug
Konvergenz Zufallsvariablen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:40 Mo 14.11.2011
Autor: Fry

Hey,

würde sagen, dass das genau der richtige Weg ist.
Zu a):
[mm]\phi_{(X_n,Y_n)}(s,t)=\int e^{i(s,t)\bullet(X_n,Y_n)}dP=\int e^{isX_n+itY_n}dP=\phi_{sX_n+tY_n}(1)[/mm]


Damit brichst du den mehrdimensionalen Fall auf den eindimensionalen runter.


Nun gilt, da die [mm] $X_n$ [/mm] und [mm] $Y_n$ [/mm] und $X$,$Y$ unabhängig sind, gilt
[mm]sX_n+tY_n\overset{d}{\longrightarrow}sX+tY[/mm] und damit nach dem Stetigkeitssatz von Lèvy


[mm]\phi_{sX_n+tY_n}(1)\overset{n\to\infty}{\longrightarrow}\phi_{sX+tY}(1)[/mm]


Jetzt nur noch die selben Umformungen von oben rückwärts machen und dann erneut Stetigkeitssatz von Levy benutzen.


VG
Fry


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de