www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz bestimmen
Konvergenz bestimmen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:36 Do 09.06.2016
Autor: sinnlos123

Untersuchen sie die Reihe [mm] \summe_{n=1}^{\infty} a_n [/mm] auf Konvergenz und absolute Konvergenz.

[mm] a_n=\bruch{i^n^2}{n^2} [/mm]

Die erste Glieder sind:

i,1/2,i/3,1/4,i/5 ...

Wie geht man da vor?
Also abolute Konvergenz ist schonmal kein Problem, das ist ja dann [mm] 1/n^2, [/mm] was konvergiert.

Welches Kriterium bringt hier was?

        
Bezug
Konvergenz bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 03:57 Do 09.06.2016
Autor: fred97

aus absoluter Konvergenz folgt Konvergenz.

fred

Bezug
                
Bezug
Konvergenz bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 05:51 Do 09.06.2016
Autor: sinnlos123

Danke sehr Fred,

Ich soll folgendes beweisen/widerlegen:
Wenn [mm] \summe_{n=1}^{\infty}a_n [/mm] konvergent ist und [mm] b_n [/mm] konvergent mit Grenzwert [mm] \not= [/mm] 0, so ist [mm] \summe_{n=1}^{\infty}a_n *b_n [/mm] auch konvergent.
(Wichtig: von n=1 bis unendlich und nicht z.b. n=2 usw)

Nun habe ich mir folgendes überlegt:
[mm] b_n=(n+1)/(n-1) [/mm]

Dadurch wird das erste Glied von der Summe [mm] \summe_{n=1}^{\infty}a_n *b_n [/mm] undefiniert. (naja, zumindest wenn a "gewöhnlich" gebaut ist)

Sagt das etwas über die Konvergenz aus?

Bezug
                        
Bezug
Konvergenz bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:42 Do 09.06.2016
Autor: hippias

Dieses Beispiel ist unbrauchbar, da die Folge [mm] (b_{n})$ [/mm] keine reelle - oder komplexe - Folge ist. Beschränke Dich auf solche Folgen. Welche Vermutung hast Du bezüglich der Richtigkeit der Aussage und warum?

Was die erste Frage mit der zweiten zu tun haben soll, erschliesst sich mir beim besten Willen nicht.

Bezug
                                
Bezug
Konvergenz bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:54 Do 09.06.2016
Autor: sinnlos123

meine vermutung ist, dass sie stimmt.

warum ist mein Beispiel keine reelle Folge?

naja, die 2. Frage hatte auch nichts mehr mit der ersten zu tun, denn die hat ja Fred ausreichend beantwortet.

Bezug
                                        
Bezug
Konvergenz bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:59 Do 09.06.2016
Autor: hippias


> meine vermutung ist, dass sie stimmt.

O.K., dann versuche sie zu beweisen. Nur wieso fängst Du dann damit an Beispiele zu untersuchen?

>  
> warum ist mein Beispiel keine reelle Folge?

Weil das Folgeglied [mm] $b_{1}$ [/mm] keine reelle Zahl ist.

>  
> naja, die 2. Frage hatte auch nichts mehr mit der ersten zu
> tun, denn die hat ja Fred ausreichend beantwortet.

Es ist Usus in diesem Fall einen neuen Faden zum Behufe besserer Übersichtlichkeit aufzumachen.

Bezug
                        
Bezug
Konvergenz bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:36 Do 09.06.2016
Autor: fred97


> Danke sehr Fred,
>  
> Ich soll folgendes beweisen/widerlegen:
>  Wenn [mm]\summe_{n=1}^{\infty}a_n[/mm] konvergent ist und [mm]b_n[/mm]
> konvergent mit Grenzwert [mm]\not=[/mm] 0, so ist
> [mm]\summe_{n=1}^{\infty}a_n *b_n[/mm] auch konvergent.
>  (Wichtig: von n=1 bis unendlich und nicht z.b. n=2 usw)
>  
> Nun habe ich mir folgendes überlegt:
>  [mm]b_n=(n+1)/(n-1)[/mm]
>  
> Dadurch wird das erste Glied von der Summe
> [mm]\summe_{n=1}^{\infty}a_n *b_n[/mm] undefiniert. (naja, zumindest
> wenn a "gewöhnlich" gebaut ist)
>  
> Sagt das etwas über die Konvergenz aus?


1. Wenn man schreibt [mm] \summe_{n=1}^{\infty}a_n, [/mm] so geht man (stillschweigend) davon aus, dass alle [mm] a_n [/mm] definiert sind.

2. Obige Aussage ist falsch. Mach Dich also auf die Suche nach einem Gegenbeispiel.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de