www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Konvergenz bzgl. Norm
Konvergenz bzgl. Norm < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz bzgl. Norm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:38 Do 01.05.2014
Autor: Petrit

Aufgabe
Untersuchen Sie die Foge [mm] (x_{k})_{k\in\IN} [/mm] mit [mm] x_{k}:= (a^{k}, (2a)^{k},...,(na)^{k}) \in {\IR}^{n} [/mm] in Abhängigkeit
von [mm] a\in {\IR}^{+} [/mm] auf Konvergenz und bestimmen Sie den Grenzwert.

Dabei ist der [mm] {\IR}^{n} [/mm] normiert mit [mm] ||*||_{1}, ||*||_{2} [/mm] und [mm] ||*||_{\infty} [/mm]


Hi!

Ich habe hier ein kleines Problemchen mit dieser Aufgabe!
Es ist egal welche Norm ich zur Überprüfung der Konergenz nehme, dies habe ich in der Aufgabe zuvor bewiesen, dass die Normen [mm] ||*||_{1}, ||*||_{2} [/mm] und [mm] ||*||_{\infty} [/mm] äquivalent sind. Ich muss hier doch Folgendes zeigen:
[mm] \limes_{k\rightarrow\infty}||x_{k}-x|| [/mm] = 0.
Mir ist allerdings nicht ganz klar, wie ich das machen kann. Dazu müsste ich doch zunächst den Grenzwert bestimmen. Aber so wie ich die Aufgabenstellung verstanden habe, divergiert die Folge doch gegen [mm] +\infty? [/mm]
Verstehe ich da grundsätzlich was falsch?
Muss man die Aufgabe doch anders lösen?

Ich bin für jeden Hinweis wirklich sehr dankbar!

Viele Grüße, Petrit!

        
Bezug
Konvergenz bzgl. Norm: Antwort
Status: (Antwort) fertig Status 
Datum: 14:48 Do 01.05.2014
Autor: Gonozal_IX

Hiho,

>  Es ist egal welche Norm ich zur Überprüfung der Konergenz nehme, dies habe ich in der Aufgabe zuvor bewiesen, dass die Normen [mm]||*||_{1}, ||*||_{2}[/mm] und [mm]||*||_{\infty}[/mm] äquivalent sind.

[ok]

> Ich muss hier doch Folgendes zeigen:
>  [mm]\limes_{k\rightarrow\infty}||x_{k}-x||[/mm] = 0.

Wenn du Konvergenz zeigen wollen würdest, ja.

>  Mir ist allerdings nicht ganz klar, wie ich das machen kann. Dazu müsste ich doch zunächst den Grenzwert bestimmen.

Oder eine Vermutung haben, sofern die Folge konvergiert.

> Aber so wie ich die Aufgabenstellung verstanden habe, divergiert die Folge doch gegen [mm]+\infty?[/mm]

Nein. [mm] $+\infty$ [/mm] ist doch gar nicht Element deines Raumes [mm] $\IR^n$, [/mm] wie soll die Folge dann dagegen konvergieren?

>  Verstehe ich da grundsätzlich was falsch?
>  Muss man die Aufgabe doch anders lösen?

Du hast doch schon das richtige zusammengefasst.

Einfacher gehts allerdings auch mit dem Satz, den ihr sicherlich auch hattet:

[mm] $x_k$ [/mm] konvergiert [mm] $\gdw$ [/mm] jede Komponente von [mm] x_k [/mm] konvergiert.

Nun untersuche mal, was mit [mm] $a^k,\ldots,(na)^k$ [/mm] passiert in Abhängigkeit von a!

Gruß,
Gono.

Bezug
                
Bezug
Konvergenz bzgl. Norm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:02 Do 01.05.2014
Autor: Petrit

Hi!
Erstmal danke für die schnelle Antwort!
Ich bin nun der Meinung, wenn a selbst eine Nullfolge ist, konvergiert [mm] a^{k}. [/mm] Ansonsten divergiert die Folge!
Ist das so in Ordnung?

Gruß, Petrit!

Bezug
                        
Bezug
Konvergenz bzgl. Norm: Antwort
Status: (Antwort) fertig Status 
Datum: 15:33 Do 01.05.2014
Autor: Gonozal_IX

Hiho,

>  Ich bin nun der Meinung, wenn a selbst eine Nullfolge ist, konvergiert [mm]a^{k}.[/mm]

[ok]

> Ansonsten divergiert die Folge!

[notok]

>  Ist das so in Ordnung?

Nein.
Was ist denn mit $a = [mm] \bruch{1}{2}$? [/mm]
Oder a=1?

Gruß,
Gono.

Bezug
                                
Bezug
Konvergenz bzgl. Norm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:44 Do 01.05.2014
Autor: Petrit

Hi!
Danke!

So wie ich deinen Ansatz jetzt verstanden habe, konvergiert nur das 1. Folgenglied, für [mm] \bruch{1}{2} [/mm] nur das 2. usw. und für [mm] \bruch{1}{n} [/mm] nur das n-te Folgenglied. Aber müssen denn nicht alle Folgenglieder denselben Grenzwert haben?
Was verstehe ich falsch?

MfG, Petrit!

Bezug
                                        
Bezug
Konvergenz bzgl. Norm: Antwort
Status: (Antwort) fertig Status 
Datum: 06:14 Fr 02.05.2014
Autor: fred97

1. Ist q [mm] \in \IR, [/mm] so konvergiert [mm] (q^k) [/mm]  genau dann, wenn |q|<1 ist.

2. Wir haben  $ [mm] x_{k}:= (a^{k}, (2a)^{k},...,(na)^{k}) \in {\IR}^{n} [/mm] $ mit a>0.

[mm] (x_k) [/mm] konvergiert [mm] \gdw (x_k) [/mm]  konvergiert koordinatenweise.


Zeige mit 1. und 2. , dass [mm] (x_k) [/mm] genau dann konvergiert, wenn [mm] a<\bruch{1}{n} [/mm] ist.

Edit: ....   a [mm] \le \bruch{1}{n} [/mm]

FRED

Bezug
                                                
Bezug
Konvergenz bzgl. Norm: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:11 Fr 02.05.2014
Autor: Gonozal_IX

Hallo fred,

[mm] \le [/mm] :-)

Gruß,
Gono.

Bezug
                                                        
Bezug
Konvergenz bzgl. Norm: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:10 Fr 02.05.2014
Autor: fred97


> Hallo fred,
>  
> [mm]\le[/mm] :-)

hallo Gono,

klar, ich werde es korrigieren.

Gruß FRED

>  
> Gruß,
>  Gono.


Bezug
                                                
Bezug
Konvergenz bzgl. Norm: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:17 Fr 02.05.2014
Autor: Petrit

Okay, erstaml danke für die Hilfe.
Jetzt habe ich verstanden, was koordinatenweise Konvergenz bedeutet.
Ich kann den lim für jede Koordinate bestimmen und erhalte dann die Konvergenz meiner Folge.
So jetzt meine Vermutung zu dieser Aufgabe:
Für [mm] a<\bruch{1}{n} [/mm] konvergiert jede Koordinate gegen 0.
Für [mm] a=\bruch{1}{n} [/mm] konvergiert jede Koordinate gegen 0, bis auf die letzte, die dann gegen 1 konvergiert.
Liege ich damit richtig?

Und noch eine Frage.

Wie kann ich den zeigen, dass $ [mm] (q^k) [/mm] $  genau dann konvergiert, wenn |q|<1 ist?

Gruß Petrit!

Bezug
                                                        
Bezug
Konvergenz bzgl. Norm: Antwort
Status: (Antwort) fertig Status 
Datum: 23:24 Fr 02.05.2014
Autor: Gonozal_IX

Hiho,

>  Für [mm]a<\bruch{1}{n}[/mm] konvergiert jede Koordinate gegen 0.
>  Für [mm]a=\bruch{1}{n}[/mm] konvergiert jede Koordinate gegen 0, bis auf die letzte, die dann gegen 1 konvergiert.

[ok]

> Wie kann ich den zeigen, dass [mm](q^k)[/mm]  genau dann konvergiert, wenn |q|<1 ist?

Nicht genau dann, wenn!
Es konvergiert zwar direkt, wenn |q|<1, aber für q=1 konvergiert es beispielsweise auch.

Fallunterscheidung:
|q| < 1: Zeige [mm] $\lim_{k\to\infty} q^k [/mm] = 0$ (z.B. über die Definition von Konvergenz)

|q| = 1: Welche Fälle gibt es denn hier? Welcher konvergiert

|q| > 1: Zeige, dass keine Konvergenz vorliegen kann.

Gruß,
Gono.


Bezug
                                                                
Bezug
Konvergenz bzgl. Norm: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:49 Sa 03.05.2014
Autor: Petrit

Alles klar, super.
Vielen Dank nochmals.

Gruß Petrit!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de