www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz der Reihe...
Konvergenz der Reihe... < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz der Reihe...: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:22 Do 13.11.2008
Autor: Shelli

Aufgabe
Seien [mm] a_{1}, a_{2},...,a_{n},... [/mm] beliebige Elemente der Menge {0,1,...,q-1}. Zeige die Konvergenz der Reihe [mm] \summe_{n=1}^{\infty} a_{n}q^{-n}. [/mm]

Hallo!
Bin gerade total verzweifelt. Mit welchem Kriterium kann ich am besten die Konvergenz beweisen.
Bin vertraut mit Quotienten- und Majorantenkriterium, aber irgendwie kriege ichs nicht auf die Reihe. Ein Ansatz oder ne Lösung, die gut nachzuvollziehen ist, wäre super!
Brauche das Ganze bis morgen, deshalb gebt mir bitte keine Ansätze, mit denen ich nichts anfangen kann. Bin euch nicht böse, wenn ihr einen Teil der Lösung verratet. ;-) Vielen vielen Dank schonmal!

        
Bezug
Konvergenz der Reihe...: Antwort
Status: (Antwort) fertig Status 
Datum: 14:39 Do 13.11.2008
Autor: Marcel

Hallo,

> Seien [mm]a_{1}, a_{2},...,a_{n},...[/mm] beliebige Elemente der
> Menge {0,1,...,q-1}.

dabei soll wohl $q [mm] \in \IN$ [/mm] gelten.

> Zeige die Konvergenz der Reihe
> [mm]\summe_{n=1}^{\infty} a_{n}q^{-n}.[/mm]
>  Hallo!
>  Bin gerade total verzweifelt. Mit welchem Kriterium kann
> ich am besten die Konvergenz beweisen.
>  Bin vertraut mit Quotienten- und Majorantenkriterium, aber
> irgendwie kriege ichs nicht auf die Reihe.

dann starte doch so: Weil $0 [mm] \le a_n \le [/mm] q-1$ für alle $n [mm] \in \IN\,,$ [/mm] gilt
[mm] $$\summe_{n=1}^{\infty} a_{n}q^{-n} \le \summe_{n=1}^{\infty} (q-1)q^{-n}=(q-1)\summe_{n=1}^{\infty} q^{-n}\,.$$ [/mm]

Im Falle $q=1$ ist alles klar. Im Falle $q [mm] \in \IN \setminus\{1\}\,:$ [/mm]
Oben hat man eine konvergente Majorante, man denke an die []geometrische Reihe (bea.: [mm] $q^{-n}=(1/q)^n$). [/mm]

(P.S.: Bei mir ist $0 [mm] \notin \IN\,.$) [/mm]

Gruß,
Marcel

Bezug
                
Bezug
Konvergenz der Reihe...: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:18 Do 13.11.2008
Autor: Shelli

Okay super danke! Das hilft mir auf jeden Fall schonmal ein wenig weiter.

Für den Fall, dass q=1 ist, konvergiert die Reihe dann gar nicht oder? Das hab ich nicht ganz verstanden. Dann wird der Term rechts 0, aber der Term links ist [mm] \not= [/mm] 0.

Für denn Fall das [mm] q\not=1 [/mm] kann ich dann einfach die Reihe mithilfe der geometrischen Reihe (meine Majorante) abschätzen und sagen, dass sie konvergent ist?

Bezug
                        
Bezug
Konvergenz der Reihe...: Antwort
Status: (Antwort) fertig Status 
Datum: 19:56 Do 13.11.2008
Autor: Marcel

Hallo,

> Okay super danke! Das hilft mir auf jeden Fall schonmal ein
> wenig weiter.
>  
> Für den Fall, dass q=1 ist, konvergiert die Reihe dann gar
> nicht oder? Das hab ich nicht ganz verstanden. Dann wird
> der Term rechts 0, aber der Term links ist [mm]\not=[/mm] 0.

doch, dann steht dort auf beiden Seiten eine [mm] $\black{0}\,.$ [/mm] Ist Dir das nicht klar? Ich meine: Dann sind alle [mm] $a_n \in \{0\}\,,$ [/mm] also [mm] $a_n=0$ [/mm] für alle $n [mm] \in \IN\,.$ [/mm] Dann ist sicher auch [mm] $\sum_{n=1}^\infty a_nq^{-n}=\sum_{n=1}^\infty 0*q^{-n}=\sum_{n=1}^\infty 0=0\,.$ [/mm]
  

> Für denn Fall das [mm]q\not=1[/mm] kann ich dann einfach die Reihe
> mithilfe der geometrischen Reihe (meine Majorante)
> abschätzen und sagen, dass sie konvergent ist?

Weil wir eine konvergente Majorante für Deine Reihe gefunden haben (und für $q [mm] \in \IN \setminus\{1\}$ [/mm] ist $0 < (1/q) < [mm] 1\,,$ [/mm] also konvergiert [mm] $\sum_{n=1}^\infty q^{-n}=\sum_{n=1}^\infty (1/q)^{n}$), [/mm] konvergiert die Reihe nach dem Majo-Krit..

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de