www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz einer Folge
Konvergenz einer Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:11 Mo 11.05.2009
Autor: aliaszero

Aufgabe


Jeweils [mm] _{n}\in\IN [/mm]

1.  [mm] a_{n}=\wurzel{b_{n}} [/mm]

[mm] ((b_{n})_{n}\in\IN [/mm] sei eine positive, konvergente Folge, mit Grenzwert [mm] b\not=0) [/mm]

2. [mm] a_{n}=\bruch{(-1)^n}{3^n -n} [/mm]

Konvergieren die Folgen? Bestimmen Sie ggf. den Grenzwert.

Hi, ich komme bei diesen Folgen nicht weiter und hoffe ihr könnt mir weiterhelfen.

1. Bei dieser Aufgabe denke ich, dass [mm] a_{n} [/mm] konvergent ist, weil ja [mm] b_{n} [/mm] schon als konvergent vorgegeben ist und wenn man von einer konvergenten Folge die Wurzel nimmt, dann müsste Sie doch immer noch konvergiegen, nur halt mit kleinerer Geschwindigkeit... Soweit meine Überlegung. Obs wirklich stimmt weiss ich nicht und vor allem weiss ich nicht wie ich das mathematisch korrekt formulieren soll.

2. hier hab ich überhaupt nix brauchbares.. hab versucht zu erweitern aber da kommt nix bei raus und ausklammern geht ja auch nicht...

lg

        
Bezug
Konvergenz einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 23:27 Mo 11.05.2009
Autor: schachuzipus

Hallo aliaszero,

>
>
> Jeweils [mm]_{n}\in\IN[/mm]
>  
> 1.  [mm]a_{n}=\wurzel{b_{n}}[/mm]
>
> [mm]((b_{n})_{n}\in\IN[/mm] sei eine positive, konvergente Folge,
> mit Grenzwert [mm]b\not=0)[/mm]
>  
> 2. [mm]a_{n}=\bruch{(-1)^n}{3^n -n}[/mm]
>  
> Konvergieren die Folgen? Bestimmen Sie ggf. den Grenzwert.
>  Hi, ich komme bei diesen Folgen nicht weiter und hoffe ihr
> könnt mir weiterhelfen.
>  
> 1. Bei dieser Aufgabe denke ich, dass [mm]a_{n}[/mm] konvergent ist,
> weil ja [mm]b_{n}[/mm] schon als konvergent vorgegeben ist und wenn
> man von einer konvergenten Folge die Wurzel nimmt, dann
> müsste Sie doch immer noch konvergiegen, nur halt mit
> kleinerer Geschwindigkeit... Soweit meine Überlegung. Obs
> wirklich stimmt weiss ich nicht und vor allem weiss ich
> nicht wie ich das mathematisch korrekt formulieren soll.

Das stimmt schon soweit, versuche doch, es in einen [mm] $\varepsilon$-Beweis [/mm] zu packen ...

Oder kürzer (falls du es benutzen darfst) über die Stetigkeit der Wurzelfunktion auf [mm] $\IR^+$ [/mm] ...


>  
> 2. hier hab ich überhaupt nix brauchbares.. hab versucht zu
> erweitern aber da kommt nix bei raus und ausklammern geht
> ja auch nicht...

Auch kannst du einen [mm] $\varepsilon$-Beweis [/mm] machen, das ist nicht allzu schwer.

Das [mm] $3^n$ [/mm] im Nenner ist ja der am schnellsten wachsende Term in [mm] $a_n$, [/mm] also würde man doch vermuten, dass das Biest gegen 0 strebt, und zwar alternierend wegen der [mm] $(-1)^n$ [/mm] im Zähler

Gib dir also ein bel. [mm] $\varepsilon>0$ [/mm] vor und schätze den Betrag [mm] $|a_n-0|=\left|\frac{(-1)^n}{3^n-n}\right|=\frac{1}{3^n-n}$ [/mm] ab, um dein [mm] $N(\varepsilon)$ [/mm] zu konstruieren ...

LG

schachuzipus

>
> lg


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de