www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz einer Folge
Konvergenz einer Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:10 Mo 30.05.2011
Autor: winler

Aufgabe 1
Aufgabe 1:  Ermitteln sie den Grenzwert von an
[mm]an = ( \bruch{2n - 1}{5n + 2})^3 [/mm]?

Aufgabe 2
Aufgabe 2: Enscheiden sie ob die Folge konvergiert oder divergiert
[mm]an = ( \bruch{3n + 2}{6n + 1})^3 + \bruch{n^2-1}{(-1)^n * n^4}[/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
zu Aufgabe 1:
Wäre folgender Lösungsansatz richtig??

Ich teile den Bruch durch n dann habe ich ja    
[mm]( \bruch{2 - \bruch{1}{n}}{5 + \bruch{2}{n}})[/mm]                                                        
für  [mm]\lim_{n \to \infty}x_n[/mm] hab ich ja dann  

[mm]\bruch{2}{5}^3[/mm]

oder???                                                                                                                                                                 zu Aufgabe 2:

gleicher Ansatz wie in Aufgabe 1 für den ersten Bruch.
Nur dann weiß ich nicht,
wie ich  mti dem alternierenden Faktor umgehen soll.
Es wäre ja dann eine beschränkte Folge die nicht konvergiert.            

        
Bezug
Konvergenz einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 19:17 Mo 30.05.2011
Autor: fencheltee


> Aufgabe 1:  Ermitteln sie den Grenzwert von an
>  [mm]an = ( \bruch{2n - 1}{5n + 2})^3 [/mm]?
>  Aufgabe 2: Enscheiden
> sie ob die Folge konvergiert oder divergiert
>   [mm]an = ( \bruch{3n + 2}{6n + 1})^3 + \bruch{n^2-1}{(-1)^n * n^4}[/mm]
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  zu Aufgabe 1:
>  Wäre folgender Lösungsansatz richtig??
>
> Ich teile den Bruch durch n dann habe ich ja    
> [mm]( \bruch{2 - \bruch{1}{n}}{5 + \bruch{2}{n}})[/mm]              
>                                          
> für  [mm]\lim_{n \to \infty}x_n[/mm] hab ich ja dann  
>
> [mm]\bruch{2}{5}^3[/mm]
>

mit klammern um den bruch ja

> oder???                                                    
>                                                            
>                                                 zu Aufgabe
> 2:
>  
> gleicher Ansatz wie in Aufgabe 1 für den ersten Bruch.
>  Nur dann weiß ich nicht,
> wie ich  mti dem alternierenden Faktor umgehen soll.
>  Es wäre ja dann eine beschränkte Folge die nicht
> konvergiert.              

bei dem rechten term kannst du das sandwichlemma anwenden:
[mm] \frac{n^2-1}{-n^4}\le\frac{n^2-1}{(-1)^n*n^4}\le\frac{n^2-1}{n^4} [/mm]

konvergieren der linke und rechte ausdruck gegen den selben grenzwert, so tut es auch der eingeschlossene term in der mitte

gruß tee

Bezug
                
Bezug
Konvergenz einer Folge: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:38 Mo 30.05.2011
Autor: winler

Aufgabe
Aufgabe 2: Enscheiden
sie ob die Folge konvergiert oder divergiert
$ an = ( [mm] \bruch{3n + 2}{6n + 1})^3 [/mm] + [mm] \bruch{n^2-1}{(-1)^n \cdot{} n^4} [/mm] $

Für $ an = ( [mm] \bruch{3n + 2}{6n + 1})^3 [/mm] + [mm] \bruch{n^2-1}{(-1)^n \cdot{} n^4} [/mm] $

würde ich ja dann den ersten bruch (  $ [mm] \bruch{3n + 2}{6n + 1})^3 [/mm] $ )

wieder durch n teilen wobei   $ [mm] \lim_{n \to \infty}$ ($\bruch{3}{6})^3 [/mm] $

und bei $ [mm] \bruch{n^2-1}{(-1)^n \cdot{} n^4} [/mm] $

per Vergleichskriterium $ [mm] \frac{n^2-1}{-n^4}\le\frac{n^2-1}{(-1)^n\cdot{}n^4}\le\frac{n^2-1}{n^4} [/mm] $
wobei die äußeren beiden Folgen gegen 0 konvergieren würden und  

$ [mm] \bruch{n^2-1}{(-1)^n \cdot{} n^4} [/mm] $   auch.

dann hätte ich ja für  $ [mm] \lim_{n \to \infty}a_n [/mm] $ [mm] ($\bruch{3}{6})^3 [/mm] $

stimmt dies soweit?^^

Bezug
                        
Bezug
Konvergenz einer Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 19:44 Mo 30.05.2011
Autor: fencheltee


> Aufgabe 2: Enscheiden
>  sie ob die Folge konvergiert oder divergiert
>  [mm]an = ( \bruch{3n + 2}{6n + 1})^3 + \bruch{n^2-1}{(-1)^n \cdot{} n^4}[/mm]
>  
> Für [mm]an = ( \bruch{3n + 2}{6n + 1})^3 + \bruch{n^2-1}{(-1)^n \cdot{} n^4}[/mm]
>  
> würde ich ja dann den ersten bruch (  [mm]\bruch{3n + 2}{6n + 1})^3[/mm]
> )
>  
> wieder durch n teilen wobei   [mm]\lim_{n \to \infty}[/mm]    
> ([mm]\bruch{3}{6})^3[/mm]
>
> und bei [mm]\bruch{n^2-1}{(-1)^n \cdot{} n^4}[/mm]
>  
> per Vergleichskriterium
> [mm]\frac{n^2-1}{-n^4}\le\frac{n^2-1}{(-1)^n\cdot{}n^4}\le\frac{n^2-1}{n^4}[/mm]
>  wobei die äußeren beiden Folgen gegen 0 konvergieren
> würden und  
>
> [mm]\bruch{n^2-1}{(-1)^n \cdot{} n^4}[/mm]   auch.
>  
> dann hätte ich ja für  [mm]\lim_{n \to \infty}a_n[/mm]
> ([mm]\bruch{3}{6})^3[/mm]
>
> stimmt dies soweit?^^

das kann man zwar noch zu 1/8 kürzen aber sonst stimmts

gruß tee


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de