www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz einer Potenzreihe
Konvergenz einer Potenzreihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Potenzreihe: keine Idee
Status: (Frage) beantwortet Status 
Datum: 18:11 Di 19.06.2007
Autor: Harris

Hallo!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich komm bei einer Aufgabe von meinem Übungsblatt nicht weiter...
Ich soll zeigen, dass die Ableitung von
f(x) = [mm] \summe_{i=1}^{\infty}\bruch{cos(i\delta)}{i}x^{i} [/mm]

das gleiche ist wie

f'(x) = [mm] \bruch{cos(\delta)-x}{1 - 2xcos(\delta) + x^{2}} [/mm]

wobei [mm] \delta [/mm] aus dem Interval ]0, [mm] 2\pi[ [/mm]

Ich hab schon die Unendliche Reihe vom Cosinus eingesetzt, ein n rausgezogen usw... aber mein Problem ist, dass ich nicht weiß, wie ich dieses [mm] x^{2k} [/mm] aus der Summe vom Cosinus rausziehe...
Am meißten irritiert mich, dass im Nenner dieser Cosinus mitten in diese Binomische Formel reingepresst wurde...?

Das weiteste, was ich geschafft habe, war:

[mm] \summe_{n=1}^{\infinity} nx^{n-1} \summe_{i=0}^{\infinity} (-1)^{i} \bruch{ \delta^{2i} n^{2i-1}}{2i!} [/mm]

Ich würde mich super freuen, wenn jemand von euch einen Tipp hätte, denn genau ohne dieses [mm] n^{2i-1} [/mm] würde genau die Ableitung rauskommen, nur ohne diesen Cosinus im Nenner.

        
Bezug
Konvergenz einer Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:18 Di 19.06.2007
Autor: Somebody


> Hallo!
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  Ich komm bei einer Aufgabe von meinem Übungsblatt nicht
> weiter...
>  Ich soll zeigen, dass die Ableitung von
> f(x) = [mm]\summe_{i=1}^{\infty}\bruch{cos(i\delta)}{i}x^{i}[/mm]
>  
> das gleiche ist wie
>  
> f'(x) = [mm]\bruch{cos(\delta)-x}{1 - 2xcos(\delta) + x^{2}}[/mm]
>  
> wobei [mm]\delta[/mm] aus dem Interval ]0, [mm]2\pi[[/mm]
>  
> Ich hab schon die Unendliche Reihe vom Cosinus eingesetzt,
> ein n rausgezogen usw... aber mein Problem ist, dass ich
> nicht weiß, wie ich dieses [mm]x^{2k}[/mm] aus der Summe vom Cosinus
> rausziehe...

Wäre es nicht einfacher, zuerst einmal die Reihe gliedweise nach [mm]x[/mm] abzuleiten: dann verschwindet schon mal die Division durch [mm]i[/mm].
Dann könnte man eventuell die Glieder dieser Reihe als Realteile einer simplen (weil bloss geometrischen!) komplexen Reihe auffassen. Der Realteil der Summe dieser komplexen gemetrischen Reihe müssten dann der gewünschte Ausdruck für [mm]f'(x)[/mm] sein... Etwas lästig ist bei diesem Verfahren, dass der Summationsindex [mm]i[/mm] genannt wird: aber am Umbenennen des Summationsindexes alleine sollte es ja nicht scheitern...


>  Am meißten irritiert mich, dass im Nenner dieser Cosinus
> mitten in diese Binomische Formel reingepresst wurde...?
>  
> Das weiteste, was ich geschafft habe, war:
>  
> [mm]\summe_{n=1}^{\infinity} nx^{n-1} \summe_{i=0}^{\infinity} (-1)^{i} \bruch{ \delta^{2i} n^{2i-1}}{2i!}[/mm]
>  
> Ich würde mich super freuen, wenn jemand von euch einen
> Tipp hätte, denn genau ohne dieses [mm]n^{2i-1}[/mm] würde genau die
> Ableitung rauskommen, nur ohne diesen Cosinus im Nenner.


Bezug
                
Bezug
Konvergenz einer Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:36 Di 19.06.2007
Autor: Harris

Die einzelnen Glieder hab ich schon abgeleitet und war dann auch angetan, dass das n sich rauskürzen lässt.
aber im prinzip bin ich da auch nicht wahnsinnig weiter gekommen...
Das Ding hat eigentlich nix mit komplexen zahlen zu tun... das einzig blöde war dieser Index i, den ich nur gewählt habe, weil der Standartmäßig eingestellt war ;-)

Außerdem weiß ich nicht, wie ich das Ding jetzt als Realteil einer komplexen Reihe auffassen soll.. macht es das nicht komplizierter?

Bezug
                        
Bezug
Konvergenz einer Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:48 Di 19.06.2007
Autor: Somebody


> Die einzelnen Glieder hab ich schon abgeleitet und war dann
> auch angetan, dass das n sich rauskürzen lässt.
>  aber im prinzip bin ich da auch nicht wahnsinnig weiter
> gekommen...
>  Das Ding hat eigentlich nix mit komplexen zahlen zu tun...
> das einzig blöde war dieser Index i, den ich nur gewählt
> habe, weil der Standartmäßig eingestellt war ;-)
>  
> Außerdem weiß ich nicht, wie ich das Ding jetzt als
> Realteil einer komplexen Reihe auffassen soll.. macht es
> das nicht komplizierter?

Also wenn x und [mm]\delta[/mm] reell sind und das allgemeine Glied der nach x abgeleiten Reihe gleich [mm]\cos(n\delta)x^n[/mm] ist, dann ist dies doch gleich [mm]\Re[(e^{i\delta}\cdot x)^n][/mm] (wobei n der Summationsindex, i die imaginäre Einheit).
Den Übergang zum Realteil, [mm]\Re[/mm] kannst Du aus der Summe herausziehen: dann bleibt eine geometrische Summe, deren Wert Du m.E. leicht hinschreiben kannst. Dann nimmst Du davon den Realteil...

Bezug
                                
Bezug
Konvergenz einer Potenzreihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:46 Di 19.06.2007
Autor: Harris

Vielen Dank für deine Antwort!
Ich hab jetzt aber etwas rumgerechnet und folgendes rausbekommen:

[mm] \summe_{n=1}^{\infty} cos(\delta*n) x^{n-1} [/mm] = [mm] x^{-1} [/mm] * [mm] \summe_{n=1}^{\infty} RE[(e^{in\delta} x^n)] [/mm] = [mm] x^{-1} [/mm] * [mm] Re[\summe_{n=1}^{\infty}x^{n}*e^{i\delta}] [/mm] = [mm] x^{-1} [/mm] * [mm] Re[\summe_{n=1}^{\infty} x^{n} \summe_{k=1}^{\infty} \bruch{i^{k}\delta^{k}}{k!}] [/mm] = [mm] x^{-1} [/mm] * [mm] Re[\summe_{n=1}^{\infty}x^n(\summe_{k=1}^{\infty}(-1)^k \bruch{\delta^{2k}}{2k!} [/mm] + i [mm] *\summe_{n=1}^{\infty} \cdots)] [/mm] = [mm] x^{-1} [/mm] * [mm] \summe_{n=1}^{\infty}x^n [/mm] * [mm] cos(\delta) [/mm] = [mm] \summe_{n=1}^{\infty}cos(\delta) x^{n-1} [/mm]

Is dochn Widerspruch... :( Was mach ich falsch?

Bezug
                                        
Bezug
Konvergenz einer Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 10:04 Mi 20.06.2007
Autor: Somebody


> Vielen Dank für deine Antwort!
>  Ich hab jetzt aber etwas rumgerechnet und folgendes
> rausbekommen:

...

> Is dochn Widerspruch... :( Was mach ich falsch?

Du rechnest nicht gerade auf gerader Linie das, was ich vorgeschlagen hatte.
Ich dachte eher an folgende Umformungen:
[mm]\frac{1}{x}\sum_{n=1}^\infty\Re\Big[\big(e^{i\delta}\cdot x\big)^n\Big]=\frac{1}{x}\Re\Big[\sum_{n=1}^\infty(e^{i\delta}\cdot x)^n\Big] = \frac{1}{x}\Re\Big[\frac{1}{1-e^{i\delta}\cdot x}-1\Big][/mm]
Damit wären wir die Summe los und könnten noch den Realteil genauer herauspräparieren

Bezug
                                        
Bezug
Konvergenz einer Potenzreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:49 Mi 20.06.2007
Autor: Somebody


> Vielen Dank für deine Antwort!
>  Ich hab jetzt aber etwas rumgerechnet und folgendes
> rausbekommen:
>  
> [mm]\summe_{n=1}^{\infty} \cos(\delta*n) x^{n-1} = x^{-1} * \summe_{n=1}^{\infty} Re[(e^{i n\delta} x^n)] = x^{-1} * Re[\summe_{n=1}^{\infty}x^{n}*e^{i\delta}][/mm]

> Was mach ich falsch?

Das letzte Gleichheitszeichen (oben) ist falsch: Du hast n im Exponenten der Basis e einfach fallenlassen, statt [mm]e^{i\delta}[/mm] hättest Du noch immer [mm]e^{i n\delta}[/mm] schreiben müssen. Ich denke: Du hast noch nicht verstanden, dass man die Reihe, nach dem Herausziehen des Realteil-Operators, Re, einfach als geometrische Reihe [mm]\sum_{n=1}^\infty z^n[/mm] auffassen kann, wobei [mm]z := e^{i \delta}\cdot x[/mm].



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de