www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz einer Reihe
Konvergenz einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:15 Fr 10.03.2006
Autor: Phecda

hallo .. ich hab eine aufgabe, die ich eigentlich gelöst habe, aber ich nicht genau weiß, ob der lösungsweg mathematik korrekt und erlaubt ist.
[mm] \summe_{n=1}^{\infty} q^n/(1+q^n) [/mm] ist meine unendliche Reihe. Man soll nun bestimmen für welche q die Reihe konvergiert bzw. divergiert!
Mit dem Quotientenkriterium erhalte ich:  q [mm] \limes_{n\rightarrow\infty} (1+q^n)/(1+q^{n+1}). [/mm] Bei der folgenden Überlegung habe ich die eins im Nenner und Zähler einfach wegfallen lassen, da sie doch eigentlich keine Rolle beim Grenzwertverlauf hat. Ich weiß jetzt nicht genau ob q * [mm] q^n/q^{n+1}= [/mm] q/q = 1 übrig bleibt, und somit die reihe stets für alle q gegen eins konvergiert?
danke für die hilfe

        
Bezug
Konvergenz einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 23:47 Fr 10.03.2006
Autor: felixf


> hallo .. ich hab eine aufgabe, die ich eigentlich gelöst
> habe, aber ich nicht genau weiß, ob der lösungsweg
> mathematik korrekt und erlaubt ist.
>  [mm]\summe_{n=1}^{\infty} q^n/(1+q^n)[/mm] ist meine unendliche
> Reihe. Man soll nun bestimmen für welche q die Reihe
> konvergiert bzw. divergiert!
>  Mit dem Quotientenkriterium erhalte ich:  q
> [mm]\limes_{n\rightarrow\infty} (1+q^n)/(1+q^{n+1}).[/mm] Bei der
> folgenden Überlegung habe ich die eins im Nenner und Zähler
> einfach wegfallen lassen, da sie doch eigentlich keine
> Rolle beim Grenzwertverlauf hat.

Nur wenn $q$ gross ist, oder genauer: wenn $|q| > 1$ ist. Aber das ist hier grad nicht der interessante Fall, siehe unten...

> Ich weiß jetzt nicht genau
> ob q * [mm]q^n/q^{n+1}=[/mm] q/q = 1 übrig bleibt, und somit die
> reihe stets für alle q gegen eins konvergiert?

Selbst wenn das Argument gerade so gestimmt haette: Das wuerde dir jetzt nur sagen, dass das Quotientenkritierium dir hier nicht helfen kann (kleine Erinnerung: Grenzwert $ < 1$ heisst Reihe konvergiert, Grenzwert $ > 1$ heisst Reihe divergiert, und Grenzwert $ = 1$ heisst man weiss erstmal nix).

Und insbesondere heisst das nicht, das die Reihe gegen $1$ konvergiert.

Erstmal: Wenn du [mm] $\frac{q^n}{q^n + 1} [/mm] = [mm] \frac{1 + q^n - 1}{q^n + 1} [/mm] = 1 - [mm] \frac{1}{q^n + 1}$ [/mm] schreibst, siehst du dass [mm] $\frac{1}{q^n + 1}$ [/mm] gegen $1$ konvergieren muss, damit [mm] $\frac{q^n}{q^n + 1}$ [/mm] gegen $0$ konvergiert -- und wenn die Summanden keine Nullfolge bilden, konvergiert die Reihe erst recht nicht (weisst du warum?).

Das konvergiert allerdings nur gegen $1$, wenn [mm] $q^n$ [/mm] gegen $0$ geht, was genau fuer $|q| < 1$ erfuellt ist. Die Reihe hat also nur dann eine Chance zu kovnergieren, wenn $|q| < 1$ ist (dann muss sie es aber erstmal trotzdem nicht, das muss man noch weiter nachpruefen).

Ist nun $|q| < 1$, so kannst du [mm] $\frac{q^n}{q^n + 1} [/mm] = [mm] \frac{1}{1 + q^{-n}}$ [/mm] betrachten, bzw. den Betrag davon. Fuer grosse $n$ kann man den Betrag durch [mm] $\frac{1}{|q|^{-n}} [/mm] = [mm] |q|^n$ [/mm] nach oben abschaetzen. Und jetzt kannst du mit Hilfe des Majorantenkriteriums zeigen, dass die Reihe fuer jedes $|q| < 1$ konvergiert (weisst du wie?).

Damit konvergiert die Reihe genau dann, wenn $|q| < 1$ ist.

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de