www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz einer Reihe
Konvergenz einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Reihe: Weiterführung Lösungsansatz
Status: (Frage) beantwortet Status 
Datum: 20:54 Mo 19.11.2007
Autor: FerrariGirlNr1

Aufgabe
Zeigen Sie mit Hilfe des Vergleichskriteriums, dass die Reihe
[mm] \summe_{K=0}^{\infty} \bruch{x^{k}}{k} [/mm]
für die Werte x>1 divergiert,. und für x [mm] \in [/mm] [0,1) konvergiert.
Für welche negativen Werte x ist die Reihe absolut konvergent?

Den ersten Teil der Aufgabe (Beweis der Divergenz für x>1) habe ich mit Hilfe der harmonischen Reihe
[mm] \summe_{K=0}^{\infty} \bruch{1}{k} [/mm] als Majorante bereits gelöst. Ich denke das ist richtig.

Zum Beweis der Konvergenz: Dafür habe ich mir die konvergente Reihe [mm] \bruch{1}{k^{2}} [/mm] als Majorante gewählt und gemäß [mm] |a_{k}| \le d_{k} [/mm]
entsteht die Gleichung
[mm] \summe_{K=0}^{\infty} |\bruch{x^{k}}{k}| \le \summe_{K=0}^{\infty} \bruch{1}{k} [/mm]

Meine Lösungsansätze lauten nun (bin mir nicht wirklich sicher):
(lasse das Summenzeichen aus zeitlichen Gründen weg, gibt ja keine Indexverschiebung usw.)
[mm] |x^{k}| \le \bruch{k}{k^{k}} [/mm]
Kann man das so umformen? Und wie mach ich nun weiter?
Freue mich über jede Hilfe!

P.S.: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 07:25 Di 20.11.2007
Autor: angela.h.b.


> Zeigen Sie mit Hilfe des Vergleichskriteriums, dass die
> Reihe
>  [mm]\summe_{K=0}^{\infty} \bruch{x^{k}}{k}[/mm]
>  für die Werte x>1
> divergiert,. und für x [mm]\in[/mm] [0,1) konvergiert.
> Für welche negativen Werte x ist die Reihe absolut
> konvergent?
>  Den ersten Teil der Aufgabe (Beweis der Divergenz für x>1)
> habe ich mit Hilfe der harmonischen Reihe
> [mm]\summe_{K=0}^{\infty} \bruch{1}{k}[/mm] als Majorante bereits
> gelöst. Ich denke das ist richtig.

Hallo,

ich denke mal, daß Deine Summe erst ab 1 laufen soll, sonst hast Du ja ein Problem.

Das mit der harm. Reihe ist richtig, Du verwendest sie allerdings nicht als Majorante, sondern als Minorante.

>
> Zum Beweis der Konvergenz: Dafür habe ich mir die
> konvergente Reihe [mm]\bruch{1}{k^{2}}[/mm] als Majorante gewählt
> und gemäß [mm]|a_{k}| \le d_{k}[/mm]
>  entsteht die Gleichung
>  [mm]\summe_{K=0}^{\infty} |\bruch{x^{k}}{k}| \le \summe_{K=0}^{\infty} \bruch{1}{k}[/mm]

Hier wolltest Du sicher  [mm] \le \summe_{K=0}^{\infty} \bruch{1}{k^2} [/mm]  schreiben.


>  
> Meine Lösungsansätze lauten nun (bin mir nicht wirklich
> sicher):
>  (lasse das Summenzeichen aus zeitlichen Gründen weg, gibt
> ja keine Indexverschiebung usw.)
>  [mm]|x^{k}| \le \bruch{k}{k^{k}}[/mm]

Das soll sicher [mm] |x^{k}| \le \bruch{k}{k^{2}} [/mm] heißen.

>  Kann man das so umformen?
> Und wie mach ich nun weiter?

Du müßtest jetzt zeigen, daß Du für jedes x  ein K findest so, daß es für alle [mm] k\ge [/mm] K stimmt.

Ich will nicht ausschließen, daß das geht, aber es ist furchtbar umständlich.

Du kannst Deine Reihe für |x| < 1 doch hervorragend durch die geometrische Reihe abschätzen, da braucht man fast nichts zu rechnen.

Gruß v. Angela


>  Freue mich über jede Hilfe!
>  
> P.S.: Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de