www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz einer Reihe
Konvergenz einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:50 So 09.12.2007
Autor: Jun-Zhe

Aufgabe
Beweisen Sie folgende Behauptungen:
Wenn [mm] \summe_{n=1}^{\infty}a_n [/mm] konvergiert, dann auch
[mm] \summe_{n=1}^{\infty}\wurzel{a_n*a_{n+1}} [/mm]
und
[mm] \summe_{n=1}^{\infty}(\bruch{1}{a_n}+\bruch{1}{a_{n+1}})^{-1} [/mm]

Hi,
also beim ersten ding habe ich leider überhaupt keine Ahnung wie man das angehen könnte, aber beim zweiten hätte ich eine Idee:

Und zwar gilt:
[mm] \summe_{n=1}^{\infty}(\bruch{1}{a_n}+\bruch{1}{a_{n+1}})^{-1} [/mm] = [mm] \summe_{n=1}^{\infty}a_n+a_{n+1} [/mm]
[mm] =\summe_{n=1}^{\infty}a_n +\summe_{n=1}^{\infty}a_{n+1} [/mm]

Da [mm] \summe_{n=1}^{\infty}a_{n+1} [/mm] logischerweise auch konvergiert, konvergiert auch die summe aus den beiden Reihen.

        
Bezug
Konvergenz einer Reihe: Korrekturen
Status: (Antwort) fertig Status 
Datum: 10:23 Mo 10.12.2007
Autor: Loddar

Hallo Jun-Zhe!


Sind in der Aufgabenstellung noch weiter Angaben zu [mm] $a_n$ [/mm] gemacht, wie z.B. dass [mm] $a_n$ [/mm] positiv ist für alle [mm] $n\in\IN$ [/mm] oder gar Angaben zur Monotonie von [mm] $a_n$ [/mm] ?

Dann folgt aus der Konvergenz von [mm] $\summe a_n$ [/mm] , dass [mm] $a_n$ [/mm] eine  Nullfolge ist mit [mm] $a_n [/mm] \ [mm] \le [/mm] \ [mm] a_{n+1}$ [/mm] :
[mm] $$\wurzel{a_n*a_{n+1}} [/mm] \ [mm] \le [/mm] \ [mm] \wurzel{a_n*a_n} [/mm] \ = \ ...$$


> Und zwar gilt:
> [mm]\summe_{n=1}^{\infty}(\bruch{1}{a_n}+\bruch{1}{a_{n+1}})^{-1}[/mm]
> = [mm]\summe_{n=1}^{\infty}a_n+a_{n+1}[/mm]

[eek] NEIN!!! Du darfst hier nicht einfach bruchweise den Kehrwert nehmen. Es gilt:
[mm] $$\left(\bruch{1}{a_n}+\bruch{1}{a_{n+1}}\right)^{-1} [/mm] \ = \ [mm] \left(\bruch{a_{n+1}+a_n}{a_n*a_{n+1}}\right)^{-1} [/mm] \ = \ [mm] \bruch{a_n*a_{n+1}}{a_n+a_{n+1}}$$ [/mm]

Gruß
Loddar


Bezug
        
Bezug
Konvergenz einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:25 Mo 10.12.2007
Autor: HJKweseleit


> Beweisen Sie folgende Behauptungen:
>  Wenn [mm]\summe_{n=1}^{\infty}a_n[/mm] konvergiert, dann auch
>  [mm]\summe_{n=1}^{\infty}\wurzel{a_n*a_{n+1}}[/mm]
>  und
>  
> [mm]\summe_{n=1}^{\infty}(\bruch{1}{a_n}+\bruch{1}{a_{n+1}})^{-1}[/mm]
>  Hi,
>  also beim ersten ding habe ich leider überhaupt keine
> Ahnung wie man das angehen könnte:

[mm] a_n [/mm] und [mm] a_{n+1} [/mm] müssen beide das selbe Vorzeichen haben, da sonst die Wurzel aus dem Produkt nicht existiert. Damit müssen aber alle Glieder gleiches Vorzeichen haben, seien also o.E. alle positiv.

Wenn [mm]\summe_{n=1}^{\infty}a_n[/mm] konvergiert, so konvergiert auch [mm]\summe_{n=1}^{\infty}a_{n+1}[/mm] (das ist ja das selbe ohne das erste Glied) und damit auch
[mm]\summe_{n=1}^{\infty}(a_n + a_{n+1})[/mm]. (Gliedweise Addition)

Dann konvergiert aber auch [mm]\summe_{n=1}^{\infty}max(a_n,a_{n+1})[/mm] (von beiden Summanden wird nur der größere ausgesucht).

Weil aber [mm] \wurzel{a_n*a_{n+1}} < max(a_n,a_{n+1})[/mm] ist (erkennt man sofort durch Quadrieren), muss auch die Summe der Wurzeln konvergieren.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de