www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz einer Reihe
Konvergenz einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:30 Sa 12.01.2013
Autor: Sauri

Aufgabe
Folgende Reihe soll auf Konvergenz geprüft werden.

[mm] \summe_{k=0}^{\infty} \bruch{x^k}{\wurzel{k+2}} [/mm]


Die o. g. Reihe konvergiert für |x| < 1. Zeige ich in diesem Fall die Konvergenz formal mit dem Majorantenkriterium?

vielen Dank für die Hilfe!

EDIT: Summationsindex korrigiert. (Helbig)

        
Bezug
Konvergenz einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:58 Sa 12.01.2013
Autor: Marcel

Hallo,

> Folgende Reihe soll auf Konvergenz geprüft werden.
>  
> [mm]\summe_{i=0}^{\infty} \bruch{x^k}{\wurzel{k+2}}[/mm]

Du meinst sicher
[mm] $$\summe_{\red{k}=0}^{\infty} \bruch{x^k}{\wurzel{k+2}}\;\text{ .}$$ [/mm]

>  Die o. g.
> Reihe konvergiert für |x| < 1. Zeige ich in diesem Fall
> die Konvergenz formal mit dem Majorantenkriterium?

Das kannst Du natürlich tun (geometrische Reihe als obere Schranke) -
wobei Du - genau gesagt - dann [mm] $\summe_{k=0}^{\infty} \red{|}\bruch{x^k}{\wurzel{k+2}}\red{|}$ [/mm] mit [mm] $\summe_{k=0}^{\infty} \red{|}x\red{|}^k$ [/mm] vergleichst,
und dann die absolute Konvergenz der Reihe für $|x| < [mm] 1\,$ [/mm] beweist, welche
dann aber insbesondere die Konvergenz der Reihe für [mm] $|x|<1\,$ [/mm] nach sich zieht.

Ich  würde aber direkt das Wurzelkriterium bemühen, denn dann weißt Du
auch direkt, dass die Reihe auch für $|x| > [mm] 1\,$ [/mm] divergiert (das geht alles
auch mit dem Quotientenkriterium) - und die Fälle [mm] $x=1\,$ [/mm] (dann divergiert
die Reihe - finde eine divergente Minorante) bzw. [mm] $x=\;-\;1$ [/mm] (dann
konvergiert die Reihe - Leibniz!) kannst Du dann auch noch separat
betrachten und hast für sogar alle $x [mm] \in \IR$ [/mm]  das Konvergenzverhalten
der Reihe untersucht!

Gruß,
  Marcel

Bezug
                
Bezug
Konvergenz einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:49 Di 15.01.2013
Autor: Sauri

Hallo vielen Dank für die Antwort. Wir haben komischerweise kein Wurzelkriterium gemacht. Ich werde deswegen, das Quotientenkriterium bemühen.

Vielen Dank und viele Grüße!

Bezug
                        
Bezug
Konvergenz einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:47 Di 15.01.2013
Autor: Marcel

Hallo,

> Hallo vielen Dank für die Antwort. Wir haben
> komischerweise kein Wurzelkriterium gemacht. Ich werde
> deswegen, das Quotientenkriterium bemühen.

habt ihr das Quotientenkriterium (QK) denn auch bewiesen, oder nur formuliert
(wobei ich mir darüber im Klaren bin, dass man das QK auch direkt mit der
geometrischen Reihe beweisen kann).

P.S. Einfach mal der Vollständigkeit wegen, damit Du's gesehen hast: In
[]Kapitel 6 (klick!) findest Du das WK und das QK...

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de