www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Konvergenz in Verteilung
Konvergenz in Verteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz in Verteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:32 So 22.06.2008
Autor: Blueman

Aufgabe
Sei [mm] (X_{n}) [/mm] eine folge unabhängiger [mm] P_{\lambda} [/mm] verteilter Zufallsvariablen und [mm] \lambda [/mm] unbekannt. [mm] P(X_{i}= [/mm] 0 ) = [mm] e^{-\lambda} [/mm] soll mittels [mm] X_{1}, X_{2},..X_{n} [/mm] geschätzt werden.  Infrage kommen die beiden Schätzer

[mm] T_{1} [/mm] = 1/n* [mm] \summe_{i=1}^{n}1_{\{X_{i} = 0\}} [/mm]    ( [mm] 1_{\{X_{i} = 0\}} [/mm] ist hier die Indikatorfunktion von [mm] \{X_{i} = 0\}.) [/mm]
[mm] T_{2} [/mm] = exp(-1/n* [mm] \summe_{i=1}^{n}X_{i}) [/mm]

Bestimmen Sie die Grenzverteilung von
[mm] \wurzel{n}*(T_{j}-e^{-\lambda}) [/mm] für j = 1,2

Hallo

Diese Aufgabe finde ich ziemlich schwer. Habe es mit dem Stetigkeitssatz versucht. Dafür braucht man ja die Charakteristischen Funktionen von T1 und T2. Dann kann man ja mit Char(aX+b) = e^(itb)*Char(at) die char. Funktion der Grenzverteilung ausrechnen. Leider kriege ich die nicht hin.

Bei T1 verstehe ich nämlich die ganze Funktion nicht und habe deshalb keine Ahnung, wie man auf die charakteristische Funktion kommen soll.
Bei T2 habe ich rumgerechnet und komme auf eine charakteristische Funktion, die aber in nicht im geringsten an eine charakteristische Funktion einer Verteilung erinnert..

Vielleicht kann mir jemand helfen? Wäre sehr schön.

Blueman

        
Bezug
Konvergenz in Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:16 Mo 23.06.2008
Autor: fenchel

Hallo,
hier hilft der Zentrale Grenzwertsatz für unabhängig und identisch verteilte Zufallsvariable weiter.
Bei [mm] T_2 [/mm] muss man noch benutzen, dass exp eine stetige Funktion ist.

Grüsse
fenchel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de