www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Konvergenz mit Imaginärteil
Konvergenz mit Imaginärteil < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz mit Imaginärteil: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:37 Mi 16.01.2013
Autor: Xaderion

Aufgabe
Welche dieser Zahlenfolgen sind konvergent, welche divergent? Geben Sie gegebenenfalls den Grenzwert an.
[...]
[mm] e_{n} [/mm] := [mm] \pi [/mm] + [mm] \bruch{i^n}{12+n} [/mm]
[...]

Moin,

die anderen Teile der Aufgabe bekomme ich ohne Probleme hin, nur jetzt habe ich eine Frage:
Ich weiß, dass die Folge einen Häufungspunkt bei [mm] \pi [/mm] hat und sie bei geradem n immer um [mm] \pi [/mm] schwankt, da dann ja i ±1 ist. Aber wie sieht es jetzt bei ungeradem n aus? Dann steht ja ±i im Nenner. Ich weiß jetzt nicht, wie das bei einer Folge gehandhabt wird, da ich noch nicht viel mit dem Imaginärteil zu tun hatte. Daher meine Frage: Wird das i dann bei der Betrachung rausgelassen und die Folge konvergiert gegen [mm] \pi [/mm] oder ist sie divergent?

Vielen Dank für Erklärungen (:

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz mit Imaginärteil: Antwort
Status: (Antwort) fertig Status 
Datum: 20:44 Mi 16.01.2013
Autor: Diophant

Hallo,

> Welche dieser Zahlenfolgen sind konvergent, welche
> divergent? Geben Sie gegebenenfalls den Grenzwert an.
> [...]
> [mm]e_{n}[/mm] := [mm]\pi[/mm] + [mm]\bruch{i^n}{12+n}[/mm]
> [...]
> Moin,
>
> die anderen Teile der Aufgabe bekomme ich ohne Probleme
> hin, nur jetzt habe ich eine Frage:
> Ich weiß, dass die Folge einen Häufungspunkt bei [mm]\pi[/mm] hat

Das hat sie, aber es ist nicht einfach nur ein Häufungspunkt.

> und sie bei geradem n immer um [mm]\pi[/mm] schwankt, da dann ja i
> ±1 ist. Aber wie sieht es jetzt bei ungeradem n aus?

Da schwankt sie auch, aber in vertikaler Richtung.

> Dann

> steht ja ±i im Nenner. Ich weiß jetzt nicht, wie das bei
> einer Folge gehandhabt wird, da ich noch nicht viel mit dem
> Imaginärteil zu tun hatte. Daher meine Frage: Wird das i
> dann bei der Betrachung rausgelassen und die Folge
> konvergiert gegen [mm]\pi[/mm] oder ist sie divergent?

Sie konvergiert gegen [mm] \pi. [/mm] Nutze aus, dass [mm] |i^n|=1, [/mm] dann dürfte es ein leichtes sein, dass zu zeigen. Dein Häufungspunkt ist also der Grenzwert.


Gruß, Diophant


Bezug
                
Bezug
Konvergenz mit Imaginärteil: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:23 Mi 16.01.2013
Autor: Xaderion

Vielen Dank (:

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de