www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz mit Indukion
Konvergenz mit Indukion < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz mit Indukion: Hallo
Status: (Frage) beantwortet Status 
Datum: 13:57 Fr 03.02.2012
Autor: MarieTherese

Wie beweise ich diese Folge anhand einer Induktion (direkt und indirekt):

a(n):= [mm] n/2^n [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Konvergenz mit Indukion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:30 Fr 03.02.2012
Autor: schachuzipus

Hallo,


> Wie beweise ich diese Folge anhand einer Induktion (direkt
> und indirekt):

Das ist doch keine Aussage!

Was soll denn "Beweisen Sie eine Folge" bedeuten??

>  
> a(n):= [mm]n/2^n[/mm]

Sollst du Konvergenz dieser Folge nachweisen?

Wie das mit dem [mm]\varepsilon[/mm]-Kriterium geht, habe ich eben in deiner anderen Frage aufgeschrieben.


Dass das eine Nullfolge ist, ist doch offensichtlich, wieso sollte man da einen indirekten Beweis ansetzen?

Das ist doch kompletter Unfug ...

Und was die Induktion angeht, von der in der "Aufgabenstellung" die Rede ist, so kannst du die verwenden für eine Abschätzung (siehe [mm](\star)[/mm] in der Antwort im anderen thread)

>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
>  

Gruß

schachuzipus


Bezug
                
Bezug
Konvergenz mit Indukion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:32 Fr 03.02.2012
Autor: MarieTherese

Die Induktion nur für eine Abschätzung?
Hier handelt es sich jetzt um das Cauchy-Kriterium  oder?
Wie würde der Beweis denn über ein Vergleichskriterium aussehen?
Oder über die Defintion der Konvergenz?

Bezug
                        
Bezug
Konvergenz mit Indukion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:38 Fr 03.02.2012
Autor: schachuzipus

Hallo nochmal,

schön, dass du so gar nicht über Antworten nachdenkst und schon nach 10 Sekunden eine neue Frage stellst ...

So wird das nix


> Die Induktion nur für eine Abschätzung?

Ja

>  Hier handelt es sich jetzt um das Cauchy-Kriterium  oder?

Nein

>  Wie würde der Beweis denn über ein Vergleichskriterium
> aussehen?

Das kenne ich nur für Reihen.

Du könntest das Sandwichlemma (Einschließungslemma) benutzen und die gegebene Folge zwischen zwei Nullfolgen "einquetschen", die eine kleiner, die andere größer ...

>  Oder über die Defintion der Konvergenz?

Das habe ich dir in der anderen Antwort vorgemacht und auch geschrieben, wo genau du die Induktion verwenden kannst ...


Also: LESEN!!! und NACHDENKEN!!! über die Antworten, die du bekommst.

Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de