www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz und Beschränktheit
Konvergenz und Beschränktheit < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz und Beschränktheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:53 Mo 07.06.2010
Autor: steffi.24

Aufgabe
z.z [mm] (a_n) [/mm] ist konvergent [mm] \gdw (a_n) [/mm] ist beschränkt und besitzt genau einen Häufungswert

Ich habe keinen Plan, wie ich das beweisen soll. Bitte um Hilfe.glg steffi

        
Bezug
Konvergenz und Beschränktheit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 Mo 07.06.2010
Autor: steppenhahn

Hallo,

> z.z [mm](a_n)[/mm] ist konvergent [mm]\gdw (a_n)[/mm] ist beschränkt und
> besitzt genau einen Häufungswert
>  Ich habe keinen Plan, wie ich das beweisen soll. Bitte um
> Hilfe.glg steffi

Du hast zwei Richtungen zu zeigen.
Schauen wir uns " [mm] \Rightarrow [/mm] " an. Da [mm] (a_{n}) [/mm] konvergent (gegen einen Grenzwert a) ist, gilt:

[mm] $\forall \varepsilon [/mm] > 0 [mm] \exists N\in\IN: \forall [/mm] n > N: [mm] |a_{n}-a| [/mm] < [mm] \varepsilon$. [/mm]

Wir können insbesondere für [mm] \varepsilon [/mm] = 1 einsetzen und erhalten, dass ein [mm] N\in\IN [/mm] existiert, so dass [mm] \forall [/mm] n > N gilt: [mm] |a_{n}-a| < [/mm] 1, d.h. $a-1 < [mm] a_{n} [/mm] < a + 1$.
Wir können außerdem das Maximum [mm] $K:=\max_{1 \le n \le N} |a_{n}|$ [/mm] bestimmen, weil das Maximum von endlich vielen Werten immer existiert.

Warum ist [mm] (a_{n}) [/mm] nun beschränkt?

Zum Häufungspunkt: Es ist natürlich so, dass dann gerade der Grenzwert a der einzige Häufungspunkt der Folge [mm] (a_{n}) [/mm] ist (Dass a eine Häufungspunkt der Folge ist, sollte klar sein). Du kannst ja mal annehmen, es gäbe einen weiteren Häufungspunkt a'. Warum folgt dann a = a' ?

------------

Nun " [mm] \Leftarrow [/mm] ":
Hier bietet sich wahrscheinlich ein Widerspruchsbeweis an. Nimm also an, [mm] (a_{n}) [/mm] wäre beschränkt, [mm] (a_{n}) [/mm] hätte nur einen einzigen Häufungspunkt a und [mm] (a_{n}) [/mm] ist nicht konvergent.

[mm] (a_{n}) [/mm] ist nicht konvergent ist äquivalent zu:

[mm] $\exists \varepsilon [/mm] > 0: [mm] \forall [/mm] N [mm] \in \IN [/mm] : [mm] \exists [/mm] n >N: [mm] |a_{n}-a| > \varepsilon$. [/mm]

Das bedeutet: Du kannst nacheinander für N = 1,2,3,... einsetzen und erhältst immer ein n > N so, dass [mm] |a_{n}-a| > \varepsilon [/mm] erfüllt ist.
Auf diese Weise erhältst du eine Teilfolge [mm] (a_{n_{k}}) [/mm] mit der Eigenschaft, dass für alle Folgenglieder von [mm] (a_{n_{k}}) [/mm] gilt: [mm] |a_{n_{k}}-a| [/mm] > [mm] \varepsilon. [/mm]

Nun stelle zweierlei fest (das ist noch zu begründen!):
- Diese Teilfolge kann keinen Häufungspunkt haben
- Diese Teilfolge ist beschränkt.

Warum ist das ein Widerspruch?

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de