www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Konvergenz von Folgen
Konvergenz von Folgen < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:42 Fr 06.05.2016
Autor: nali

Aufgabe
Zu betrachten ist die Menge [mm]C([0,2\pi],\IR)[/mm] aller stetigen Funktionen [mm]f : [0,2\pi]\rightarrow \IR[/mm] mit der Metrik [mm]d_{max}(f,g):=max(|f(x)-g(x)|:x\in[a,b])[/mm]. Sind die folgenden Folgen in diesem Raum konvergent? Berechnen sie ggf. den Grenzwert.

[mm]f(x) : sin(x)^k[/mm]

[mm]g(x) : sin(kx)[/mm]

[mm]h(x) : x-\frac{1}{k}sin(kx)[/mm]

Ich bin mir nicht sicher wie die richtige Vorgehensweise ist und benötige ein wenig Unterstütztung. Hier meine Gedanken.

Eine Folge im metrischen Raum [mm](X,d)[/mm] heißt konvergent, falls es ein [mm]x\inX[/mm] mit folgender Eigenschaft gibt:

[mm]\forall \epsilon \in \IR^{>0} \quad \exists n \n \IN \quad \forall k>n \quad d(x_k,x)< \epsilon[/mm].

Für [mm] x=0,\pi,2\pi [/mm] ist der Sinus 0. Hier konvergiert die Folge mit dem Grenzwert 0 sobald [mm] k\rightarrow \infty. [/mm]

Für [mm] x=\pi/2 [/mm] ist der Sinus 1. Die Folge konvergiert, der Grenzwert ist 1.

Für [mm] x=3/2\pi [/mm] ist der Sinus -1. Hier entsteht eine alternierende Folge und es konvergiert mMn nicht.

In allen Werten dazwischen konvergiert die Folge für k [mm] \rightarrow \infty [/mm] gegen 0, da der Sinus immer < 0 ist.

Die Funktion g konvergiert für x=0, für alle anderen x nicht.

Die funktion h konvergiert gegen den Grenzwert x.

Frage: Es kommt mir vor als ob ich die Punktweise Konvergenz betrachte und nicht den ganzen Raum? Wie bewerte ich es bezüglich der Metrik?

        
Bezug
Konvergenz von Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:52 Sa 07.05.2016
Autor: fred97


die Konvergenz bezüglich obiger Metrik ist gerade die gleichmäßige Konvergenz auf [0,2 [mm] \pi] [/mm]

fred

Bezug
                
Bezug
Konvergenz von Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:35 Mo 09.05.2016
Autor: nali

ist>
> die Konvergenz bezüglich obiger Metrik ist gerade die
> gleichmäßige Konvergenz auf 0,2 [mm]\pi][/mm]
>  
> fred

Ist die Aufgabe richtig gelöst?

Wenn ich mit Metriken arbeite, dann habe ich doch immer mit [mm]d(x,x')<\epsilon[/mm] Bedinungen. Wenn ich Epsilon beliebig groß wähle, dann konvergiert doch alles bezüglich einer Metrik? Oder ist es anders definiert?

Bezug
                        
Bezug
Konvergenz von Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:35 Mo 09.05.2016
Autor: fred97


> ist>
> > die Konvergenz bezüglich obiger Metrik ist gerade die
> > gleichmäßige Konvergenz auf 0,2 [mm]\pi][/mm]
>  >  
> > fred
>
> Ist die Aufgabe richtig gelöst?

Nein. Du hast nur punktweise Konvergenz betrachtet.


>  
> Wenn ich mit Metriken arbeite, dann habe ich doch immer mit
> [mm]d(x,x')<\epsilon[/mm] Bedinungen. Wenn ich Epsilon beliebig
> groß wähle, dann konvergiert doch alles bezüglich einer
> Metrik? Oder ist es anders definiert?

Unsinn.


Sei [mm] (x_n) [/mm] eine Folge in einem metrischen Raum (M,d) und x [mm] \in [/mm] M

[mm] (x_n) [/mm] konv. gegen x

[mm] \gdw [/mm]

zu jedem(!) [mm] \varepsilon [/mm] >0 ex. ein [mm] k=k(\varepsilon) \in \IN [/mm] mit [mm] d(x_n,x)< \varepsilon [/mm] für alle n>k.

Die Betonung liegt auf "zu jedem(!) [mm] \varepsilon [/mm] >0 "

FRED


Bezug
                                
Bezug
Konvergenz von Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:15 Di 10.05.2016
Autor: nali


> > Wenn ich mit Metriken arbeite, dann habe ich doch immer mit
> > [mm]d(x,x')<\epsilon[/mm] Bedinungen. Wenn ich Epsilon beliebig
> > groß wähle, dann konvergiert doch alles bezüglich einer
> > Metrik? Oder ist es anders definiert?
>
> Sei [mm](x_n)[/mm] eine Folge in einem metrischen Raum (M,d) und x
> [mm]\in[/mm] M
>  
> [mm](x_n)[/mm] konv. gegen x
>  
> [mm]\gdw[/mm]
>  
> zu jedem(!) [mm]\varepsilon[/mm] >0 ex. ein [mm]k=k(\varepsilon) \in \IN[/mm]
> mit [mm]d(x_n,x)< \varepsilon[/mm] für alle n>k.
>  
> Die Betonung liegt auf "zu jedem(!) [mm]\varepsilon[/mm] >0 "
>  
> FRED
>  

Okay, verständlich.

Wenn eine Funktion schon punktweise im Definitionsbereich nicht konvergiert, kann sie überhaupt noch gleichmäßig konvergieren? Oder genügt es einen Punkt im Definitionsbereich zu finden indem sie nicht konvergiert?

Bezug
                                        
Bezug
Konvergenz von Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 10:29 Di 10.05.2016
Autor: fred97


> > > Wenn ich mit Metriken arbeite, dann habe ich doch immer mit
> > > [mm]d(x,x')<\epsilon[/mm] Bedinungen. Wenn ich Epsilon beliebig
> > > groß wähle, dann konvergiert doch alles bezüglich einer
> > > Metrik? Oder ist es anders definiert?
> >
> > Sei [mm](x_n)[/mm] eine Folge in einem metrischen Raum (M,d) und x
> > [mm]\in[/mm] M
>  >  
> > [mm](x_n)[/mm] konv. gegen x
>  >  
> > [mm]\gdw[/mm]
>  >  
> > zu jedem(!) [mm]\varepsilon[/mm] >0 ex. ein [mm]k=k(\varepsilon) \in \IN[/mm]
> > mit [mm]d(x_n,x)< \varepsilon[/mm] für alle n>k.
>  >  
> > Die Betonung liegt auf "zu jedem(!) [mm]\varepsilon[/mm] >0 "
>  >  
> > FRED
>  >  
>
> Okay, verständlich.
>  
> Wenn eine Funktion


Du meinst sicher "eine Funktionenfolge..."


>  schon punktweise im Definitionsbereich
> nicht konvergiert, kann sie überhaupt noch gleichmäßig
> konvergieren?


Nein, das kann sie nicht, denn aus der gleichmäßigen Konvergenz folgt die punktweise Konvergenz.

FRED


> Oder genügt es einen Punkt im
> Definitionsbereich zu finden indem sie nicht konvergiert?  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de