www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Konvergenz von Folgen
Konvergenz von Folgen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Folgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:50 Di 22.12.2009
Autor: Schobbi

Aufgabe
a) Zeigen Sie, dass eine monotone und beschränkte Folge in R konvergiert
b) Gilt die Aussage aus a) auch für Folgen in Q? Bitte begründen Sie Ihre Antwort kurz.

Hey ich bins nochmal und bevor ich in die Weihnachtsferien starte möchte ich gerne noch obige Aufgabe lösen.

Den Aufgabenteil a) hab ich schon gelöst! Und zwar hab ich hier über die kleinste obere Schranke argumentiert, etc. also kein Problem

Bei Aufgabenteil b) bin ich mir sicher das die Antwort NEIN lauten muss, denn sonst würde man die Frage ja nicht so stellen ;-) Mir fällt aber leider kein Gegenbeispiel oder ähnliches ein. Vielleicht könnt ihr mir dabei helfen

Danke! Viele Grüße
Schobbi

        
Bezug
Konvergenz von Folgen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:01 Di 22.12.2009
Autor: reverend

Hallo Schobbi,

> a) Zeigen Sie, dass eine monotone und beschränkte Folge in
> R konvergiert
>  b) Gilt die Aussage aus a) auch für Folgen in Q? Bitte
> begründen Sie Ihre Antwort kurz.
>  Hey ich bins nochmal und bevor ich in die Weihnachtsferien
> starte möchte ich gerne noch obige Aufgabe lösen.
>  
> Den Aufgabenteil a) hab ich schon gelöst! Und zwar hab ich
> hier über die kleinste obere Schranke argumentiert, etc.
> also kein Problem

Klingt gut.

> Bei Aufgabenteil b) bin ich mir sicher das die Antwort NEIN
> lauten muss, denn sonst würde man die Frage ja nicht so
> stellen ;-)

Coole Argumentation. Hier ist übrigens auch Glatteis.

> Mir fällt aber leider kein Gegenbeispiel oder
> ähnliches ein.

Mir auch nicht.

Wo könnte denn ein Problem auftauchen?
Doch eigentlich nur, wenn die obere Schranke (um bei den monoton wachsenden Folgen zu bleiben) irrational ist.

Da kennst Du sicher Beispiele, z.B. [mm] a_n=\left(1+\bruch{1}{n}\right)^n, [/mm] oder [mm] b_n=\summe_{k=1}^n \bruch{1}{n^2} [/mm]

Die erste Folge hat bekanntlich die obere Schranke e, die zweite [mm] \bruch{\pi^2}{6}. [/mm]

Und - taucht ein Problem auf?

> Vielleicht könnt ihr mir dabei helfen
>  
> Danke! Viele Grüße
>  Schobbi

Gleichfalls,
reverend

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de