www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz von Potenzreihen
Konvergenz von Potenzreihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Potenzreihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:11 Do 16.12.2004
Autor: Xenia

HI,

hab foldende Potenzreihen zu untersuchen, für welche x aus R konvergieren die und für welche nicht.

a) [mm] \summe_{n=1}^{ \infty}(-1)^{n-1}\bruch{ x^{n}}{n}[/mm]

b) [mm] \summe_{n=0}^{\infty}x^{n^{2}} [/mm]

c) [mm] \summe_{n=1}^{\infty}\vektor{2n \\ n}x^{n}[/mm]

Welche Kriterien soll ich hier anwenden? Bitte ein paar Tips!

Vielen Dank!!!


        
Bezug
Konvergenz von Potenzreihen: Tipps
Status: (Antwort) fertig Status 
Datum: 22:45 Do 16.12.2004
Autor: sirprize

Hi Xenia!

zu A) $ [mm] \summe_{n=1}^{ \infty}(-1)^{n-1}\bruch{ x^{n}}{n} [/mm] $ ist doch nichts anderes als $ [mm] \summe_{n=1}^{ \infty}\bruch{(-1)^{n-1}}{n} x^{n} [/mm] $.
Dann einfach die bekannten Kriterien anwenden (z.B. was ist wohl $ [mm] \limsup_{n\rightarrow\infty}\wurzel[n]{\bruch{(-1)^{n-1}}{n}} [/mm] $ ?)

zu B) Substitution (z.B. $ u = [mm] n^{2} [/mm] $), die Summe geht sowieso bis $ [mm] \infty [/mm] $
Natürlich nicht die Rücksubstitution vergessen.

zu C) Sobald ein Binomialkoeffizient auftaucht, würde ich grundsätz vom Wurzelkriterium abraten. Aber dafür gibt was viel geschickteres mit Quotienten :-)

Und noch ein Zusatztipp: Wenn du z.B. noch dazugeschrieben hättest, was du dir bislang dazu gedacht hast, dann hätte ich viel besser auf deine Fragen eingehen können. Ich weiss ja nicht, welche Kriterien du kennst und wieviel du bisher mit Potenzreihen gemacht hast :-)

Gruss,
Michael

Bezug
        
Bezug
Konvergenz von Potenzreihen: tipp zu b)
Status: (Antwort) fertig Status 
Datum: 23:20 Do 16.12.2004
Autor: Edi1982

Zu dem oben kommt noch:
[mm] \summe_{n=0}^{\infty}x^{n^{2}} [/mm] ist immer positiv.
egal ob x pos. oder neg.,
da [mm] n^{2} [/mm]

Viele Grüße vom Prof. Freitag :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de