www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz von Reihen
Konvergenz von Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:32 Do 04.02.2016
Autor: mathephysik01

Aufgabe
Untersuchen Sie die folgenden Reihen auf Konvergenz:
[mm] \summe_{n=1}^{\infty} \bruch{1}{\wurzel{n}} sin(\bruch{\pi*n}{2}) [/mm]

Hallo zusammen,

gängige Konvergenzkriterien und so weiter sind mir geläufig. Allerdings gehen bei mir jegliche Ansätze nahezu sofort daneben, weil ich mir sehr unsicher im Umgang mit sin(x) bin. Der Sinus so wie er oben ist nimmt ja immer abwechselnd die Werte {-1,0,1} an. Also welche dazwischen werden nicht getroffen. Soweit klar.
Wurzelkriterium scheint mir nicht sehr sinnvoll.
Einziger Ansatz der eventuell hinhauen könnte wäre die Minorante. Wenn man bedenkt, dass der Sinus nicht kleiner als -1 wird könnte man doch eigentlich eine Minorante als [mm] \summe_{n=1}^{\infty}- \bruch{1}{\wurzel{n}} [/mm] wählen oder liege ich da falsch?
Somit wäre meine Reihe divergent.

Über nützliche Tipps und Anmerkungen würde ich mich sehr freuen. Danke!


        
Bezug
Konvergenz von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:13 Do 04.02.2016
Autor: abakus


> Untersuchen Sie die folgenden Reihen auf Konvergenz:
> [mm]\summe_{n=1}^{\infty} \bruch{1}{\wurzel{n}} sin(\bruch{\pi*n}{2})[/mm]
>  
> Hallo zusammen,
>
> gängige Konvergenzkriterien und so weiter sind mir
> geläufig. Allerdings gehen bei mir jegliche Ansätze
> nahezu sofort daneben, weil ich mir sehr unsicher im Umgang
> mit sin(x) bin. Der Sinus so wie er oben ist nimmt ja immer
> abwechselnd die Werte {-1,0,1} an. Also welche dazwischen
> werden nicht getroffen. Soweit klar.
> Wurzelkriterium scheint mir nicht sehr sinnvoll.
>  Einziger Ansatz der eventuell hinhauen könnte wäre die
> Minorante. Wenn man bedenkt, dass der Sinus nicht kleiner
> als -1 wird könnte man doch eigentlich eine Minorante als
> [mm]\summe_{n=1}^{\infty}- \bruch{1}{\wurzel{n}}[/mm] wählen oder
> liege ich da falsch?
>  Somit wäre meine Reihe divergent.
>  
> Über nützliche Tipps und Anmerkungen würde ich mich sehr
> freuen. Danke!
>  

Hallo,
die Summanden, bei denen der Sinus Null wird, kannst du ignorieren.
Bleiben die, die abwechselnd positiv und negativ werden.
Das schreit nach Leibniz.


Bezug
                
Bezug
Konvergenz von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:04 Do 04.02.2016
Autor: mathephysik01

Aaah. Stimmt es ist ja gar keine absolute Konvergenz gefragt.
Das heißt hier kann man den Sinus als [mm] (-1)^n [/mm] auffassen sozusagen und es reicht zu sagen, dass die andere Folge eine monoton fallende Nullfolge ist oder?:)

Bezug
                        
Bezug
Konvergenz von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:00 Fr 05.02.2016
Autor: fred97

Die oben vorgelegte Reihe ist nichts anderes als

[mm] \summe_{k=0}^{\infty}\bruch{(-1)^k}{\wurzel{2k+1}}. [/mm]

Das leinbizt gewaltig ...

FRED

Bezug
                                
Bezug
Konvergenz von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:20 Fr 05.02.2016
Autor: mathephysik01

Okay, danke. Dann ist es ziemlich offensichtlich.

Wie kommt aber die 2k+1 unter die Wurzel? Ändert zwar nichts aber trotzdem..

Bezug
                                        
Bezug
Konvergenz von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:58 Fr 05.02.2016
Autor: Gonozal_IX

Hiho,

na die gerade Glieder sind alle Null und die ungeraden erreichst du über $2k+1$

Gruß,
Gono

Bezug
                                                
Bezug
Konvergenz von Reihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:12 Fr 05.02.2016
Autor: mathephysik01

Natürlich...
vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de