www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz von Reihen
Konvergenz von Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Reihen: Korrektur und Ideen
Status: (Frage) beantwortet Status 
Datum: 17:38 Di 27.11.2007
Autor: Alex87

Aufgabe
Zeigen Sie, dass die folgenden Reihen konvergent sind.

a)  [mm] \summe_{k=1}^{\infty} \bruch{1}{k (k + 2)} [/mm]

b)  [mm] \summe_{j=0}^{\infty} \bruch{1}{j!} [/mm]

c)   [mm] \summe_{k=1}^{\infty} (\bruch{1}{2})^{2k} [/mm]

Hallo Matheraum Community,
ich habe mir gedacht, um die Konvergenz einer Reihe zu beweisen muss ich zuerst die Konvergenz der Folge zeigen.

Meine Rechnung für a:

[mm] \bruch{1}{k (k + 2)} [/mm]    ->Nenner und Zähler durch k dividiert

= [mm] \bruch{\bruch{1}{k}}{1 (1 + 2)} [/mm]

= [mm] \bruch{\bruch{1}{k}}{3} [/mm]

wenn nun k -> [mm] \infty [/mm]

konvergiert die Folge nach 0 (Nullfolge -> ist doch auch die Vorraussetztung,dass die Reihe konvergent sein kann oder?)

und nun muss ich doch nur noch zeigen das die Reihe konvergiert:

[mm] \summe_{k=1}^{\infty} \bruch{1}{k (k + 2)} [/mm] = [mm] \bruch{1}{3} [/mm] + [mm] \bruch{1}{8} [/mm] + [mm] \bruch{1}{15} [/mm] + [mm] \bruch{1}{24}+... [/mm]

das würde dann einen lim knapp über 1/2 ergeben aber ich glaube, dass das der total falsche ansatz ist!
Muss ich versuchen den Therm umzuformen und dann erst nach unendlich streben lassen (wenn ja wie?) oder liege ich komplett falsch und muss versuchen mit dem Majorantenkriterium zu arbeiten??


Grüße Alex87

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.




        
Bezug
Konvergenz von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 Di 27.11.2007
Autor: schachuzipus

Hallo Alex,


> Zeigen Sie, dass die folgenden Reihen konvergent sind.
>  
> a)  [mm]\summe_{k=1}^{\infty} \bruch{1}{k (k + 2)}[/mm]
>  
> b)  [mm]\summe_{j=0}^{\infty} \bruch{1}{j!}[/mm]
>  
> c)   [mm]\summe_{k=1}^{\infty} (\bruch{1}{2})^{2k}[/mm]
>  Hallo
> Matheraum Community,
> ich habe mir gedacht, um die Konvergenz einer Reihe zu
> beweisen muss ich zuerst die Konvergenz der Folge zeigen.
>  
> Meine Rechnung für a:
>  
> [mm]\bruch{1}{k (k + 2)}[/mm]    ->Nenner und Zähler durch k
> dividiert
>  
> = [mm]\bruch{\bruch{1}{k}}{1 (1 + 2)}[/mm]

[schockiert] aus ner Summe hast du gekürzt?? Ohauerhau

>  
> = [mm]\bruch{\bruch{1}{k}}{3}[/mm] [notok]
>
> wenn nun k -> [mm]\infty[/mm]
>  
> konvergiert die Folge nach 0 (Nullfolge -> ist doch auch
> die Vorraussetztung,dass die Reihe konvergent sein kann
> oder?) [ok]

Ja das ist es, und [mm] $\frac{1}{k(k+2)}$ [/mm] ist natürlich ne Nullfolge

>  
> und nun muss ich doch nur noch zeigen das die Reihe
> konvergiert:
>  
> [mm]\summe_{k=1}^{\infty} \bruch{1}{k (k + 2)}[/mm] = [mm]\bruch{1}{3}[/mm] +
> [mm]\bruch{1}{8}[/mm] + [mm]\bruch{1}{15}[/mm] + [mm]\bruch{1}{24}+...[/mm]
>  
> das würde dann einen lim knapp über 1/2 ergeben aber ich
> glaube, dass das der total falsche ansatz ist!
>  Muss ich versuchen den Therm umzuformen und dann erst nach
> unendlich streben lassen (wenn ja wie?) oder liege ich
> komplett falsch und muss versuchen mit dem
> Majorantenkriterium zu arbeiten?? [daumenhoch]

Das ist mal ne sehr gute Idee !!

Habt ihr schon irgendwo gezeigt, dass dir Reihe [mm] $\sum\frac{1}{k^2}$ [/mm] konvergent ist? Die würde sich als Vergleichsreihe anbieten...

Alternativ kannst du den Reihenwert direkt ausrechnen.

Es ist ja [mm] $\sum\limits_{k=1}^{\infty}a_k=\lim\limits_{n\to\infty}\underbrace{\sum\limits_{k=1}^na_k}_{=S_n}$ [/mm]

Also der Grenzwert der Partialsummen.

Mache mal hier [mm] $\bruch{1}{k (k + 2)}$ [/mm] eine Partialbruchzerlegung mit dem Ansatz:

[mm] $\bruch{1}{k (k + 2)}=\frac{A}{k}+\frac{B}{k+2}$ [/mm]

Dann stelle mal solch eine n-te Partialsumme [mm] $S_n$ [/mm] auf und du wirst sehen, dass das ne schöne Teleskopsumme ist, in der sich fast alle Summanden wegheben.

Dann den Grenzübergang [mm] $n\to\infty$ [/mm] und du hast den Reihenwert ;-)

zu (b) Probiere mal das Quotientenkriterium

zu (c) Stichwort: "Potenzgesetze und geometrische Reihe"

Wenn du das benutzt, kannst du auch sehr leicht den Reihenwert angeben


LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de