www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz von Reihen
Konvergenz von Reihen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:47 Fr 05.08.2011
Autor: kushkush

Aufgabe
Man untersuche die folgenden Reihen auf Konvergenz bzw. Divergenz:


1. [mm] $\sum_{n\ge 1} \frac{n!}{n^{n}}$ [/mm]

2. [mm] $\sum_{n\in \IN} n^{4} [/mm] / [mm] 3^{n}$ [/mm]

3.$ [mm] \sum_{n\ge 1} \frac{3^{n}n!}{n^{n}}$ [/mm]

4. [mm] \sum_{n\in \IN} \frac{n+4}{n^{2}-3n+1}$ [/mm]

Hallo,


1. Mit dem Quotientenkriterium folgt: [mm] $|\frac{n^{n}}{(n+1)^{n}}| [/mm] < 1$ also konvergent.

2. Mit dem Quot. [mm] $|(n+1)^{4} [/mm] / [mm] 3n^{4}|< [/mm] 1$ , also konvergent

3. Qutoientenkriterium liefert : [mm] $\frac{3n^{n}}{(n+1)^{n}} [/mm] < 1 $ also divergent

4. mit Quot. bekommt man $| [mm] \frac{n^{3}...}{n^{2}...}| [/mm] < 1 $ also divergent.


Ist das so richtig?


Danke für jegliche Hilfestellung.


Gruss
kushkush

        
Bezug
Konvergenz von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:51 Fr 05.08.2011
Autor: abakus


> Man untersuche die folgenden Reihen auf Konvergenz bzw.
> Divergenz:
>  
>
> 1. [mm]\sum_{n\ge 1} \frac{n!}{n^{n}}[/mm]
>  
> 2. [mm]\sum_{n\in \IN} n^{4} / 3^{n}[/mm]
>
> 3.[mm] \sum_{n\ge 1} \frac{3^{n}n!}{n^{n}}[/mm]
>  
> 4. [mm]\sum_{n\in \IN} \frac{n+4}{n^{2}-3n+1}$[/mm]
>  Hallo,
>  
>
> 1. Mit dem Quotientenkriterium folgt:
> [mm]|\frac{n^{n}}{(n+1)^{n}}| < 1[/mm] also konvergent.
>
> 2. Mit dem Quot. [mm]|(n+1)^{4} / 3n^{4}|< 1[/mm] , also konvergent
>  
> 3. Qutoientenkriterium liefert : [mm]\frac{3n^{n}}{(n+1)^{n}} < 1[/mm]
> also divergent
>  
> 4. mit Quot. bekommt man [mm]| \frac{n^{3}...}{n^{2}...}| < 1[/mm]
> also divergent.
>
>
> Ist das so richtig?

Du hast das Quotientenkriterium nicht verstanden.
Du musst eine konkrete Zahl q<1 angeben können, sodass
Quotient [mm] \le [/mm] q<1 gilt.
Nach deiner Argumentation wäre auch die harmonische Reihe
[mm]\sum_{n\in \IN} \frac{1}{n}$[/mm] konvergent, denn
|n/(n+1)| ist kleiner als 1.
Es ist aber bekannt, dass sie divergiert.
Gruß Abakus

>  
>
> Danke für jegliche Hilfestellung.
>  
>
> Gruss
>  kushkush


Bezug
                
Bezug
Konvergenz von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:11 Fr 05.08.2011
Autor: kushkush

Hallo abakus,


> falsch

Wenn ich das q über den Grenzwert erhalte, dann ist es richtig  odeR?

1. [mm] $|\frac{n^{n}}{(n+1)^{n}}| \le \frac{1}{2} [/mm] < 1 $

2. [mm] $\lim_{n\rightarrow \infty} |(n+1)^{4} [/mm] / [mm] 3n^{4}| \rightarrow \frac{1}{3} [/mm] < 1 $

3. [mm] $\lim_{n\rightarrow \infty} |\frac{3n^{n}}{(n+1)^{n}}| \rightarrow [/mm]  3  $

also divergent

4. [mm] $\lim _{n\rightarrow \infty} [/mm] | [mm] \frac{n^{3}...}{n^{2}...}| \rightarrow \infty [/mm] > 1  $ also divergent



So besseR?



> GruB abakus

Danke!



Gruss
kushkush

Bezug
                        
Bezug
Konvergenz von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:19 Fr 05.08.2011
Autor: kamaleonti

Moin kushkush,
> > falsch
>  
> Wenn ich das q über den Grenzwert erhalte, dann ist es
> richtig  odeR?
>
> 1. [mm]|\frac{n^{n}}{(n+1)^{n}}| \le \frac{1}{2} < 1[/mm]

Es gilt sogar [mm] \frac{n^{n}}{(n+1)^{n}}\to\frac{1}{e}, n\to\infty. [/mm]

>  
> 2. [mm]\lim_{n\rightarrow \infty} |(n+1)^{4} / 3n^{4}| \rightarrow \frac{1}{3} < 1[/mm]

[ok]

>  
> 3. [mm]\lim_{n\rightarrow \infty} |\frac{3n^{n}}{(n+1)^{n}}| \rightarrow 3 [/mm]

[notok]
Wie oben gilt [mm] \frac{n^{n}}{(n+1)^{n}}\to\frac{1}{e},n\to\infty, [/mm] also [mm] \frac{3n^{n}}{(n+1)^{n}}\to\frac{3}{e}>1, n\to\infty [/mm]

>  
> also divergent[ok]
>  
> 4. [mm]\lim _{n\rightarrow \infty} | \frac{n^{3}...}{n^{2}...}| \rightarrow \infty > 1 [/mm] [notok]

Die Reihe ist divergent, aber mit dem QK kann man das nicht so gut zeigen. Besser eine divergente Minorante finden.

LG


Bezug
                                
Bezug
Konvergenz von Reihen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 Fr 05.08.2011
Autor: kushkush

Hallo kamaleonti,


> 1; 3  :  [mm] \frac{n^{n}}{(n+1)^{n}} [/mm]




[mm] $\frac{n^{n}}{(n+1)^{n}} [/mm] = [mm] \frac{1}{(1+\frac{1}{n})^{n}} [/mm] $  und mit [mm] $\lim [/mm] _{n [mm] \rightarrow \infty} (1+\frac{1}{n})^{n} \rightarrow [/mm] e $ ...



> Die Reihe ist divergent, aber mit dem QK kann man das nicht so gut zeigen



[mm] $|\frac{n+4}{n^{2}-3n+1}| [/mm] > [mm] \frac{n+\frac{3}{2}}{(n+\frac{3}{2})^{2}} [/mm] = [mm] \frac{1}{n+\frac{3}{2}} [/mm] $

und die harmonische Reihe ist eine Majorante für  [mm] $\sum \frac{1}{n+\frac{3}{2}}$ [/mm] oder Integraltestsatz.



So ok?


> LG

Danke sehr!


Gruss
kushkush

Bezug
                                        
Bezug
Konvergenz von Reihen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:13 Fr 05.08.2011
Autor: abakus


> Hallo kamaleonti,
>  
>
> > 1; 3  :  [mm]\frac{n^{n}}{(n+1)^{n}}[/mm]
>
>
>
>
> [mm]\frac{n^{n}}{(n+1)^{n}} = \frac{1}{(1+\frac{1}{n})^{n}}[/mm]  
> und mit [mm]\lim _{n \rightarrow \infty} (1+\frac{1}{n})^{n} \rightarrow e[/mm]
> ...
>  
>
>
> > Die Reihe ist divergent, aber mit dem QK kann man das nicht
> so gut zeigen
>  
>
>
> [mm]|\frac{n+4}{n^{2}-3n+1}| > \frac{n-\frac{3}{2}}{(n-\frac{3}{2})^{2}} = \frac{1}{n+\frac{3}{2}}[/mm]
>  
> und die harmonische Reihe ist eine Majorante für  [mm]\sum \frac{1}{n+\frac{3}{2}}[/mm]
> oder Integraltestsatz.
>
>
>
> So ok?

Ja.

Ich hätte noch eine andere Variante, ich würde hier den Zähler beibehalten und den Nenner auf [mm] n^2+4n [/mm] vergrößern (für [mm] n\ge [/mm] 1 ist [mm] n^2-3n+1 [/mm] immer kleiner als [mm] n^2+4n). [/mm]
Gruß Abakus

>
>
> > LG
>
> Danke sehr!
>  
>
> Gruss
>  kushkush


Bezug
                                                
Bezug
Konvergenz von Reihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:16 Fr 05.08.2011
Autor: kushkush

Hallo abakus,


> nicht ganz

> Meine Abschätzung

Ok!!!


> GruB abakus

Danke!!

Gruss
kushkush

Bezug
                                                        
Bezug
Konvergenz von Reihen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Fr 05.08.2011
Autor: abakus


> Hallo abakus,
>  
>
> > nicht ganz
>  
> > Meine Abschätzung
>  
> Ok!!!

Hallo,
ich habe meine Antwort verbessert. Deine Abschätzung ist OK (Zähler verkleinern, Nenner Vergrößern).
Gruß Abakus

>
>
> > GruB abakus
>  Danke!!
>  
> Gruss
>  kushkush


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de