www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz zeigen
Konvergenz zeigen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:48 Do 03.08.2017
Autor: Rocky1994

Moin,

ich hätte mal eine allgemeine Frage. Wenn man auf Konvergenz überprüft reicht es einfach nur die Hinreichende Bedingung zu zeigen oder muss man auch die notwendige Bedingung zeigen?

Konkret geht es um die folgende Aufgabe: Überprüfen Sie die Reihe [mm] \summe_{n=1}^{\infty} (\bruch{n}{2n+1})^{n} [/mm] auf Konvergenz.

Über das Wurzelkriterium erhält man [mm] \limes_{n\rightarrow\infty} \wurzel[n]{(\bruch{n}{2n+1})^{n}} [/mm] = [mm] \bruch{1}{2} [/mm]

Muss ich jetzt auch noch die notwendige Bedingung zeigen?

LG Rocky1994

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenz zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:22 Fr 04.08.2017
Autor: X3nion


> Moin,
>
> ich hätte mal eine allgemeine Frage. Wenn man auf
> Konvergenz überprüft reicht es einfach nur die
> Hinreichende Bedingung zu zeigen oder muss man auch die
> notwendige Bedingung zeigen?
>  
> Konkret geht es um die folgende Aufgabe: Überprüfen Sie
> die Reihe [mm]\summe_{n=1}^{\infty} (\bruch{n}{2n+1})^{n}[/mm] auf
> Konvergenz.
>  
> Über das Wurzelkriterium erhält man
> [mm]\limes_{n\rightarrow\infty} \wurzel[n]{(\bruch{n}{2n+1})^{n}}[/mm]
> = [mm]\bruch{1}{2}[/mm]
>
> Muss ich jetzt auch noch die notwendige Bedingung zeigen?
>  
> LG Rocky1994
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Hallo Rocky1994,

das Wurzelkriterium basiert auf einem Vergleich mit der geometrischen Reihe. Was den Vergleich angeht, so basiert dieser im Falle der Konvergenz auf dem Majorantenkriterium mit der geometrischen Reihe als konvergente Majorante.

Da das Majorantenkriterium wiederum auf Basis des Cauchy'schen Konvergenzkriteriums erfolgt, ist die notwendige Bedingung nicht extra zu prüfen, da diese im Falle der Erfüllung des Cauchy Kriteriums für Reihen automatisch erfüllt ist!


Viele Grüße,
X3nion

Bezug
        
Bezug
Konvergenz zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:21 Fr 04.08.2017
Autor: fred97


> Moin,
>
> ich hätte mal eine allgemeine Frage. Wenn man auf
> Konvergenz überprüft reicht es einfach nur die
> Hinreichende Bedingung zu zeigen

.... die hinreichende Bedingung .... ? Gibts nur eine ?


>  oder muss man auch die
> notwendige Bedingung zeigen?

Hmmm.... . Meinst Du damit, dass Du noch zeigen musst, dass die Reihenglieder eine Nullfolge bilden ?

Wenn ja, so lautet meine Antwort: nein, natürlich nicht !

Wenn Du mit einem blabla-blubber - Kriterium gezeigt hat, dass eine vorgelegte Reihe konvergiert, so folgt dann auch: die Reihenglieder bilden eine Nullfolge.


>  
> Konkret geht es um die folgende Aufgabe: Überprüfen Sie
> die Reihe [mm]\summe_{n=1}^{\infty} (\bruch{n}{2n+1})^{n}[/mm] auf
> Konvergenz.
>  
> Über das Wurzelkriterium erhält man
> [mm]\limes_{n\rightarrow\infty} \wurzel[n]{(\bruch{n}{2n+1})^{n}}[/mm]
> = [mm]\bruch{1}{2}[/mm]
>
> Muss ich jetzt auch noch die notwendige Bedingung zeigen?

Wie gesagt: nö.

Da [mm]\limes_{n\rightarrow\infty} \wurzel[n]{(\bruch{n}{2n+1})^{n}}<1[/mm] ist, folgt aus dem Wurzelkriterium (hier ist blabla-blubber = Wurzel) die konvergenz der Reihe  [mm]\summe_{n=1}^{\infty} (\bruch{n}{2n+1})^{n}[/mm] und daraus dann [mm] (\bruch{n}{2n+1})^{n} \to [/mm] 0.


>  
> LG Rocky1994
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Konvergenz zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:07 Sa 05.08.2017
Autor: Rocky1994

Vielen Dank!

Bezug
        
Bezug
Konvergenz zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:13 Fr 04.08.2017
Autor: donquijote


> Moin,
>
> ich hätte mal eine allgemeine Frage. Wenn man auf
> Konvergenz überprüft reicht es einfach nur die
> Hinreichende Bedingung zu zeigen oder muss man auch die
> notwendige Bedingung zeigen?

Hallo,
mal ganz allgemein unabhängig von der betrachteten Situation:
H ist hinreichende Bedingung für die Aussage A bedeutet, dass wenn H erfüllt ist, auch A gelten muss, also [mm]H\Rightarrow A[/mm].
N ist eine notwendige Bedingung für A, wenn [mm]A\Rightarrow N[/mm].
Damit gilt in jedem Fall [mm]H\Rightarrow A\Rightarrow N[/mm], d.h. wenn eine hinreichende Bedingung erfüllt ist, muss eine notwendige Bedingung auf jeden Fall auch erfüllt sein und es wäre Blödsinn, dies gesondert nachzuprüfen.

>  
> Konkret geht es um die folgende Aufgabe: Überprüfen Sie
> die Reihe [mm]\summe_{n=1}^{\infty} (\bruch{n}{2n+1})^{n}[/mm] auf
> Konvergenz.
>  
> Über das Wurzelkriterium erhält man
> [mm]\limes_{n\rightarrow\infty} \wurzel[n]{(\bruch{n}{2n+1})^{n}}[/mm]
> = [mm]\bruch{1}{2}[/mm]
>
> Muss ich jetzt auch noch die notwendige Bedingung zeigen?
>  
> LG Rocky1994
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de