www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz zeigen
Konvergenz zeigen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz zeigen: Probleme bei der Definition
Status: (Frage) beantwortet Status 
Datum: 16:03 Do 14.11.2013
Autor: xxgenisxx

Aufgabe
Aufgabe 26: Zeigen Sie, daß die Folge [mm] (s_n) [/mm] mit

[mm] s_n = \bruch{2n}{n+2} + 2^{-n} [/mm]
Gegen s=2 Konvergiert. Bestimmen sie dann zu [mm] \epsilon 10^{-6} [/mm] eine Zahl sodass [mm] |s_n [/mm] - s| größer [mm] \epsilon [/mm] für n größer N

Hallo,
ich brach mal wieder hilfe bei einem Problem ich will eig nichtmal unbedingt die Lösung für dieses Problem, sondern kommt alllgemein nicht damit klar, was nun genau von mir verlangt wird.
Ich soll nämlich folgendende Def für den Beweis benutzen:
Eine Folge konvergiert, wenn es eine Zahl s gibt, sd.:
∀ ε > 0 ∃N ≥ 1 ∀ n ≥ N |sn − s| < ε.
Wie würde ich also Beispielsweise zeigen, dass [mm] 2^n [/mm] gegen unendlich geht? Bitte mit außführlicher Erklärung für Dumme ;D

Danke schonmal!!

Ich habe die Frage sonst nirgendwo gestellt ;D

        
Bezug
Konvergenz zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:08 Do 14.11.2013
Autor: fred97


> Aufgabe 26: Zeigen Sie, daß die Folge [mm](s_n)[/mm] mit
>
> [mm]s_n = \bruch{2n}{n+2} + 2^{-n}[/mm]
>   Gegen s=2 Konvergiert.
> Bestimmen sie dann zu [mm]\epsilon 10^{-6}[/mm] eine Zahl sodass
> [mm]|s_n[/mm] - s| größer [mm]\epsilon[/mm] für n größer N


Doch eher < [mm] \epsilon. [/mm]


>  Hallo,
> ich brach mal wieder hilfe bei einem Problem ich will eig
> nichtmal unbedingt die Lösung für dieses Problem, sondern
> kommt alllgemein nicht damit klar, was nun genau von mir
> verlangt wird.
>  Ich soll nämlich folgendende Def für den Beweis
> benutzen:
>  Eine Folge konvergiert, wenn es eine Zahl s gibt, sd.:
>  ∀ ε > 0 ∃N ≥ 1 ∀ n ≥ N |sn − s| < ε.

>  Wie würde ich also Beispielsweise zeigen, dass [mm]2^n[/mm] gegen
> unendlich geht?


Die von Dir oben zitierte Definition bezieht sich auf konvergente Folgen mit Grenzwert in [mm] \IR. [/mm]

Man kann auch uneigentliche Grenzwerte einführen:

Def.: Sei [mm] (s_n) [/mm] eine Folge. [mm] s_n \to \infty [/mm]  : [mm] \gdw [/mm]

    zu jedem c>0 ex. ein N [mm] \in \IN [/mm] mit: [mm] s_n [/mm] >c für alle n mit n>N.

FRED


> Bitte mit außführlicher Erklärung für
> Dumme ;D
>  
> Danke schonmal!!
>  
> Ich habe die Frage sonst nirgendwo gestellt ;D


Bezug
                
Bezug
Konvergenz zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:57 Do 14.11.2013
Autor: xxgenisxx

Ja, das ist mir klar,
ich weiß nur nicht wie ich eben z.B. zeige dass z.b. 1/n gegen 0 geht...
Was mir fehlt ist eben grad so ein Beispiel zu zeigen.

Bezug
                        
Bezug
Konvergenz zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:11 Do 14.11.2013
Autor: Richie1401

Hallo,

also als Bsp möchtest du jetzt einmal, dass [mm] a_n=\frac{1}{n} [/mm] gegen 0 geht, wenn [mm] n\to\infty? [/mm]

Nagut, dann machen wir das mal. Der Grenzwert ist als 0, das setzen wir nun alles in die Defintion ein:

[mm] |a_k-a|=|1/n-0|=|1/n|=1/n\stackrel{!}{<}\varepsilon. [/mm]

Wir formen nun [mm] 1/n<\varepsilon [/mm] um und erhalten: [mm] n>\frac{1}{\varepsilon}. [/mm] Also gibt es zu jedem [mm] \varepsilon>0 [/mm] ein [mm] n_0 [/mm] derart, dass der Abstand [mm] |a_n-0|<\varepsilon [/mm] für [mm] n>n_0. [/mm] Das ist ja genau die Definition der konvergenten Folge. Wir sind also am Ziel.


Für deine Aufgabe heißt das also:
Du musst ein [mm] n_0 [/mm] ermitteln, sodass
[mm] \left|\bruch{2n}{n+2}+2^{-n}-2\right|<\varepsilon. [/mm]

Bezug
                                
Bezug
Konvergenz zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:43 Do 14.11.2013
Autor: xxgenisxx

Genau den anschupser habe ich gebracht, DANKE!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de