Konvergenzberechunung < Sonstiges < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:44 So 20.02.2005 | Autor: | Skydiver |
Hallo.
Ich habe ein kleines Problem bei einer Konvergenzberechnung:
zeigen sie die Konvergenz folgender uneigentlicher Integral:
[mm] \int_{1}^{\infty} e^{-x^2}*\cosh x\, [/mm] dx
[mm] \int_{-1}^{1} [/mm] -2 [mm] \cos [/mm] x [mm] \sin x^2 [/mm] / [mm] x^2\, [/mm] dx
Also ich denke, dass ich das durch
[mm] \lim_{x \to \infty}x^a [/mm] * f(x) = A
berechnen muss und je nach dem Wert von a ist das Integral dann konvergent oder divergent; jedoch komme ich dabei auf keine Lösung, da ich beim zweiten für: a > 0 : 0
a = 0 : -2
a < 0 : [mm] -\infty
[/mm]
erhalte, und dadurch nicht auf Konvergenz bzw. Divergenz schließen kann.
Beim ersten schaffe ich es nicht einmal durch entsprechende Umformungen auf ein Ergebnis der Grenzwertbeziehung zu kommen.
Ich hoffe jemand hat einen kleinen Tip für mich.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:14 So 20.02.2005 | Autor: | andreas |
hi
also die regel, die du vorschlägst ist mir nicht ganz klar. es wäre nett, wenn du die nochmal etwas genauer erläutern könntest. ansonsten hätte ich folgenden vorschlag: beim ersten integral kannst du den [mm] $\cosh [/mm] x = [mm] \frac{\textrm{e}^x + \textrm{e}^{-x}}{2}$ [/mm] ersetzen, dann erhälst du
[m] \int_1^\infty \textrm{e}^{-x^2} \cosh x \, \textrm{d}x = \int_1^\infty \textrm{e}^{-x^2} \frac{\textrm{e}^x + \textrm{e}^{-x}}{2} \, \textrm{d}x = \int_1^\infty \left( \frac{\textrm{e}^{-x^2 + x}}{2} + \frac{\textrm{e}^{-x^2 - x}}{2} \right) \, \textrm{d}x [/m]
nun kannst du zeigen, dass das integral über jeden summanden konvergiert und daraus folgern, dass das von dir betrachtete integral konvergiert.
z.b. gilt für $x [mm] \geq [/mm] 1$, dass [mm] $-x^2 [/mm] - x [mm] \leq [/mm] -2x$ und [mm] $-x^2 [/mm] + x [mm] \leq [/mm] -x + 1$ (sofern ich mich nicht verrechnet habe), also (wegen der positivität und der monotonie der [mm] $\textrm{e}$-funktion):
[/mm]
[m] 0 \leq \int_1^\infty \frac{\textrm{e}^{-x^2 + x} }{2} \, \textrm{d}x \leq \int_1^\infty \textrm{e}^{-x+1} \, \textrm{d}x [/m] und [m] 0 \leq \int_1^\infty \frac{ \textrm{e}^{-x^2 - x}}{2} \, \textrm{d}x \leq \int_1^\infty \textrm{e}^{-x} \, \textrm{d}x [/m].
bei dem zweiten integral würde ich zeigen, dass die funktion in $x=0$ stetig ergänzbar ist, woraus direkt die konvergenz des integrals folgt (tipp: betrachte [m] \lim_{x \to 0} \frac{\sin x^2}{x^2} [/m] - mit de l'hôspital oder taylor-entwicklung).
probiere mal, ob du damit weiterkommst, sonst melde dich einfach nochmal.
grüße
andreas
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:31 So 20.02.2005 | Autor: | Skydiver |
Das von mir vorgeschlagenen Lösungsverfahren basiert auf dem Wachstumsvergleich mit der Potenzfunktion 1 / [mm] (x-a)^b, [/mm] die am linken Intervallende (a) dasselbe Verhalten aufweist, wie die zu untersuchende Funktion. Von dieser Potenzfunktion weiß man, dass das Integral für b < 1 konvergiert und für b >= 1 divergiert;
ist nun f(x) <= [mm] C/(x-a)^b [/mm] --> dass auch f(x) konvergiert und dass ist dann der Fall wenn [mm] limes_{x \to 0}f(x) [/mm] * [mm] (x-a)^b [/mm] = C ist;
--> exisitert dieser Grenzwert für b < 1 --> Konvergenz
existiert er für b >= 1 --> Divergenz;
|
|
|
|