www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenzbereich bestimmen
Konvergenzbereich bestimmen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzbereich bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:38 Mi 14.02.2007
Autor: ex.aveal

Hallo.

Gegeben ist die Reihe [mm] \summe_{k=0}^{\infty}3^{2k+1}(x-1)^{2k} [/mm]

Man soll nun den Konvergenzbereich angeben. Dazu muss man ja zuerst den Konvergenzradius ausrechnen.

[mm] r=\wurzel[2]{\limes_{n\rightarrow\infty}|\bruch{3^{2k+1}}{3^{1k+3}}|}=\wurzel[2]{\bruch{1}{3}} [/mm]

Ist das richtig? Es handelt sich hierbei ja um eine geometrische Reihe, richtig?

Der Entstehungspunkt ist 1, somit ist der Konvergenzbereich von [mm] 1-\wurzel[2]{\bruch{1}{3}} [/mm] bis [mm] 1+\wurzel[2]{\bruch{1}{3}} [/mm]

Nun soll noch ermittelt werden, gegen welche !Funktion! diese Summe konvergiert. Welchen Ansatz muss man dafür bilden?

        
Bezug
Konvergenzbereich bestimmen: kleine Korrektur+ Ränder
Status: (Antwort) fertig Status 
Datum: 11:55 Mi 14.02.2007
Autor: Roadrunner

Hallo ex.avael!


Da ist Dir bei der Berechnung des Konvergenzradius'  ein Fehler unterlaufen:

$r \ = \ [mm] \wurzel[2]{\limes_{k\rightarrow\infty}\left|\bruch{a_k}{a_{k+1}}\right|} [/mm] \ = \ [mm] \wurzel{\limes_{k\rightarrow\infty}\left|\bruch{3^{2k+1}}{3^{2*\red{(k+1)}+1}}\right|}\ [/mm] = \ [mm] \wurzel{\limes_{k\rightarrow\infty}\left|\bruch{3^{2k+1}}{3^{\red{2}k+3}}\right|}\ [/mm] = \ [mm] \wurzel{\limes_{k\rightarrow\infty}\left|\bruch{1}{\red{9}}\right|} [/mm] \ = \ [mm] \bruch{1}{3}$ [/mm]


> Der Entstehungspunkt ist 1, somit ist der Konvergenzbereich von [mm]1-\wurzel[2]{\bruch{1}{3}}[/mm] bis  [mm]1+\wurzel[2]{\bruch{1}{3}}[/mm]

Prinzipiell richtig. Aber was ist mit der Konvergenz exakt auf den Rändern des Intervalles [mm] $\left] \ 1-r \ ; \ 1+r \ \right[$ [/mm] ?

Diese musst Du noch separat untersuchen.


Gruß vom
Roadrunner


Bezug
        
Bezug
Konvergenzbereich bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:00 Do 15.02.2007
Autor: wauwau

Wrum so kompliziert??

Die Summe schreibt sich, wie schon richtig bemerkt auch als

[mm] \summe_{k=1}^{\infty}3^{2k+1}(x-1)^{2k} [/mm] = [mm] 3.\summe_{k=1}^{\infty} (9.(x-1)^{2})^{k} [/mm] als normale geometriche Reihe
die genau dann konvergiert wenn
[mm] 9.(x-1)^{2} [/mm] < 1  und damit  [mm] \bruch{2}{3} [/mm] < x < [mm] \bruch{4}{3} [/mm]
und die Summe berechnet sich zu

[mm] \bruch{3}{1-9.(x-1)^{2}} [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de