www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenzbereich einer Reihe
Konvergenzbereich einer Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzbereich einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:26 So 30.03.2008
Autor: olivercan

Hallo ich habe noch eine weitere Frage.
Und zwar habe ich die folgende Reihe gegeben [mm] \summe_{n\in\IN}\bruch{n(x-1)^n}{2^n(3n-1)} [/mm]
Gesucht ist das Supremum des Konvergenzbereiches.
Ich habe das Quotientenkriterium versucht um die gleichung an+1<an aufzustellen die dann folgendermaßen aussieht
[mm] \bruch{n_{+1}(x-1)^{n+1}}{2^{n+1}(3n)}<\bruch{n(x-1)^n}{2^n(3n-1)} [/mm]
Doch ab hier komme ich nicht mehr weiter und weiß leider nicht mal ob ich hiermit auf der richtigen spur bin. Könnt ihr mir helfen?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Danke

        
Bezug
Konvergenzbereich einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:39 So 30.03.2008
Autor: Somebody


> Hallo ich habe noch eine weitere Frage.
>  Und zwar habe ich die folgende Reihe gegeben
> [mm]\summe_{n\in\IN}\bruch{n(x-1)^n}{2^n(3n-1)}[/mm]
>  Gesucht ist das Supremum des Konvergenzbereiches.
>  Ich habe das Quotientenkriterium versucht um die gleichung
> an+1<an aufzustellen


Für die Bestimmung des Konvergenzradius [mm] $\rho$ [/mm] einer Potenzreihe der Form [mm] $\sum_{n\in\IN} a_n (x-1)^n$ [/mm] hast Du doch die Formel

[mm]\rho = \frac{1}{\limsup_{n\in\IN}\sqrt[n]{a_n}}[/mm]


Hier ist [mm] $a_n= \frac{n}{2^n (3n-1)}$ [/mm] und daher [mm] $\limsup_{n\in \IN}\sqrt[n]{a_n}=\cdots [/mm] = [mm] \frac{1}{2}$. [/mm] Somit ist der Konvergenzradius [mm] $\rho=2$. [/mm]
Das heisst: die Potenzreihe konvergiert für $|x-1|<2$, bzw. äquivalent dazu $-1<x<3$, absolut.


Bezug
                
Bezug
Konvergenzbereich einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:53 So 30.03.2008
Autor: olivercan

Danke für deine Antwort
Aber ich verstehe leider nicht wie du [mm] \bruch{1}{2} [/mm] herausgefunden hast und auch nicht wie du dann auf 2 kommst

Bezug
                        
Bezug
Konvergenzbereich einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 21:06 So 30.03.2008
Autor: schachuzipus

Hallo olivercan,

na, betrachte doch mal [mm] $\sqrt[n]{|a_n|}=\sqrt[n]{\left|\frac{n}{2^n\cdot{}(3n-1)}\right|}=\frac{\sqrt[n]{n}}{\sqrt[n]{2^n}\cdot{}\sqrt[n]{3n-1}}$ [/mm]

Wogegen strebt das für [mm] $n\to\infty$? [/mm]

Doch genau gegen [mm] $\frac{1}{2}$ [/mm]

Also ist der Konvergenzradius mit der obigen Formel [mm] $\rho=\frac{1}{\frac{1}{2}}=2$ [/mm]


Alternativ, wenn du das Rechnen mit der n-ten Wurzel nicht so magst, kannst du anstatt dieses Kriterium von Cauchy-Hadamard zu benutzen, das Kriterium von Euler (ähnlich dem Quotientenkriterium) benutzen.

Berechne dazu [mm] $R=\lim\limits_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|$ [/mm]

Dann ist der Konvergenzradius [mm] $\rho=\frac{1}{R}$ [/mm] - wie oben

Es kommt natürlich ebenfalls 2 heraus - kannste ja mal nachrechnen...


LG

schachuzipus

Bezug
                                
Bezug
Konvergenzbereich einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:11 So 30.03.2008
Autor: olivercan

Vielen vielen dank schachuzipus damit hast du meinen sonntag zu 2.mal gerettet.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de