www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Konvergenzbeweis einer Reihe
Konvergenzbeweis einer Reihe < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzbeweis einer Reihe: Frage mit Lösungsidee
Status: (Frage) beantwortet Status 
Datum: 21:13 Mi 15.12.2004
Autor: T000B

Hi! Ich hab da mal nen Problem mit ner Hausaufgabe, wobei ich allerdings glaube eine Lösung gefunden zu haben. Nur bin ich mir unsicher ob die formulierung und die logischen Schlüssel so in Ordnung sind.

Seien [mm] \{w_{n}\}_{n\in\IN} \subset \IC [/mm]  und [mm] \{z_{n}\}_{n\in\IN}\subset \IC [/mm]  Folgen mit [mm] \summe_{n=1}^{ \infty}|w_{n}|^{2}< +\infty [/mm]  und [mm] \summe_{n=1}^{ \infty}|z_{n}|^{2}< +\infty [/mm] . Zeigen Sie, dass dann auch die Reihe [mm] \summe_{n=1}^{ \infty}w_{n}\*\overline{z}_{n} [/mm] konvergiert!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
Meine Lösungsidee sieht also wie folgt aus:

da ja für komplexe Zahlen die Ungleichung von CAUCHY-SCHWARZ | [mm] \summe_{n=1}^{ m}w_{n}\*\overline{z}_{n}|^{2} \le(\summe_{n=1}^{ m}|w_{n}|^{2})*(\summe_{n=1}^{ m}|z_{n}|^{2}) [/mm] und für [mm] \alpha=\summe_{n=1}^{\infty}|w_{n}|^{2} [/mm] und [mm] \beta=\summe_{n=1}^{ m}|z_{n}|^{2} [/mm] die Abschätzung  [mm] \alpha*\beta<+\infty [/mm] gilt, folgt daraus [mm] |\summe_{n=1}^{\infty}w_{n}\*\overline{z}_{n}|^{2} \le\alpha*\beta<+\infty [/mm]

Und da nur das Produkt zweier konvergenter Reihen wieder eine konvergente Reihe ergibt folgt [mm] \summe_{n=1}^{\infty}w_{n}\*\overline{z}_{n}<+\infty [/mm]

Ist das so in Ordnung oder hab ich vielleicht irgendwas grundlegendes nicht beachtet??

MfG
T000B
  



        
Bezug
Konvergenzbeweis einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 23:18 Mi 15.12.2004
Autor: Marcel

Hallo T000B!

Also, die Idee müßte stimmen. [ok]
Aber da gibt es Kleinigkeiten zu korrigieren/ergänzen:

> Hi! Ich hab da mal nen Problem mit ner Hausaufgabe, wobei
> ich allerdings glaube eine Lösung gefunden zu haben. Nur
> bin ich mir unsicher ob die formulierung und die logischen
> Schlüssel so in Ordnung sind.
>  
> Seien [mm]\{w_{n}\}_{n\in\IN} \subset \IC[/mm]  und
> [mm]\{z_{n}\}_{n\in\IN}\subset \IC[/mm]  Folgen mit [mm]\summe_{n=1}^{ \infty}|w_{n}|^{2}< +\infty[/mm]
>  und [mm]\summe_{n=1}^{ \infty}|z_{n}|^{2}< +\infty[/mm] . Zeigen
> Sie, dass dann auch die Reihe [mm]\summe_{n=1}^{ \infty}w_{n}\*\overline{z}_{n}[/mm]
> konvergiert!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>  Meine Lösungsidee sieht also wie folgt aus:
>  
> da ja für komplexe Zahlen die Ungleichung von
> CAUCHY-SCHWARZ | [mm]\summe_{n=1}^{ m}w_{n}\*\overline{z}_{n}|^{2} \le(\summe_{n=1}^{ m}|w_{n}|^{2})*(\summe_{n=1}^{ m}|z_{n}|^{2})[/mm]

Die lautet hier dann eigentlich:
[mm] $(\star)$[/mm]  [mm]\left(\summe_{n=1}^{ m}|w_{n}\*\overline{z}_{n}|\right)^{2} \le \left(\summe_{n=1}^{ m}|w_{n}|^{2}\right)*\left(\summe_{n=1}^{ m}|\overline{z_{n}}|^{2}\right)[/mm] (ich kenne sie zumindest so, und das ist eine feinere Abschätzung als deine!), wobei man das [mm] $\overline{z_n}$ [/mm] natürlich durch [mm] $z_n$ [/mm] ersetzen darf, da [mm] $|z_n|=|\overline{z_n}|$. [/mm]  

> und für [mm]\alpha=\summe_{n=1}^{\infty}|w_{n}|^{2}[/mm] und
> [mm]\beta=\summe_{n=1}^{ m}|z_{n}|^{2}[/mm] die Abschätzung  
> [mm]\alpha*\beta<+\infty[/mm] gilt, folgt daraus
> [mm]|\summe_{n=1}^{\infty}w_{n}\*\overline{z}_{n}|^{2} \le\alpha*\beta<+\infty [/mm]

Okay, aber präziser:
Zunächst hätte ich geschrieben:
Wegen $0 [mm] \le \alpha [/mm] < [mm] \infty$ [/mm] und $0 [mm] \le \beta [/mm] < [mm] \infty$ [/mm]
[mm] $\Rightarrow$ [/mm] $0 [mm] \le \alpha \beta [/mm] < [mm] \infty$. [/mm]
Weiter folgt damit:
[mm]\left(\summe_{n=1}^{ m}|w_{n}\*\overline{z}_{n}|\right)^{2} \le(\summe_{n=1}^{ m}|w_{n}|^{2})*(\summe_{n=1}^{ m}|z_{n}|^{2})[/mm]
[mm] $\Rightarrow$ [/mm]
[mm]\summe_{n=1}^{ \infty}|w_{n}\*\overline{z}_{n}| \le \wurzel{\underbrace{\alpha \beta}_{beachte:\; \alpha \beta \ge 0}} \le \alpha \beta < \infty[/mm]

> Und da nur das Produkt zweier konvergenter Reihen wieder
> eine konvergente Reihe ergibt folgt
> [mm]\summe_{n=1}^{\infty}w_{n}\*\overline{z}_{n}<+\infty[/mm]

  
Hm, du willst wohl mit dem/einem Satz über das Cauchy-Produkt argumentieren? Da verstehe ich jetzt nicht, worauf du hinaus willst.

Ich würde so argumentieren:
Wegen [mm]\summe_{n=1}^{ \infty}|w_{n}\*\overline{z}_{n}| \le \wurzel{\alpha \beta} \le \alpha \beta < \infty[/mm]
[mm] $\Rightarrow$ [/mm]
[mm]\summe_{n=1}^{ \infty}|w_{n}\*\overline{z}_{n}|[/mm] konvergiert (da die Folge der Teilsummen beschränkt ist).
Das aber wiederum heißt:
[mm]\summe_{n=1}^{ \infty}w_{n}\*\overline{z}_{n}[/mm] ist absolut konvergent und damit insbesondere konvergent.

Viele Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de