www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenzen
Konvergenzen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:36 Sa 28.08.2010
Autor: xgizmo

Aufgabe
Direkt mit Hilfe der Definition der Konvergenz untersuche man die Folge:

[mm] \vektor{(-1)^{n}*+n-7 \\ (-1)^{n+1}*(3n^{2}-n-15)} [/mm]

Das soll ein Bruch sein....

Hallo ihr Lieben,

ich habe da mal eine Frage... Mein Professor hat in der VL diese Aufgabe mal vorgemacht und da hat er sowas gemacht:

für den Nenner, der ja noch im Betrag steht:

[mm] 3|(3n^{2}-n-15)| [/mm]   die Folge konvergiert ja gegen [mm] -\bruch{1}{3} [/mm]

Er hat quasi: [mm] 3*(-1)^{n+1} [/mm] zusammengefasst zu 3
Aber wieso??
Kann mir das mal jemand erklären??

Viele Grüße

        
Bezug
Konvergenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:41 Sa 28.08.2010
Autor: ChopSuey

Moin,

kannst du den Bruch evtl noch Leserfreundlicher gestalten? Die Vorschau-Funktion im Nachrichtenfenster erlaubt es dir zu kontrollieren, wie der Bruch aussieht.

Brüche macht man mit  \frac{a}{b}  und das ergibt [mm]\frac{a}{b}[/mm]

Grüße
ChopSuey


Bezug
        
Bezug
Konvergenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:48 Sa 28.08.2010
Autor: xgizmo

sorry,
kann damit noch nicht so ganz umgehen.
Mir ging es aber eigentlich mehr darum zu wissen,
weshalb 3* [mm] (-1)^{n+1} [/mm] = 3 ist

Bezug
                
Bezug
Konvergenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:53 Sa 28.08.2010
Autor: ChopSuey

Hallo,


> sorry,
>  kann damit noch nicht so ganz umgehen.
>  Mir ging es aber eigentlich mehr darum zu wissen,
>  weshalb 3* [mm](-1)^{n+1}[/mm] = 3 ist

Du meinst sicher 3* [mm]|(-1)^{n+1}|[/mm] = 3

Es ist $ [mm] |(-1)^{n+1}| [/mm] $ = 1 für alle $ n [mm] \in \IN [/mm] $

Grüße
ChopSuey


Bezug
                        
Bezug
Konvergenzen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:00 Sa 28.08.2010
Autor: xgizmo

Aufgabe
Er hat quasi:
[mm] |(-1)^{n+1}*3*(3n^{2}-n-15)| [/mm] = 3 [mm] |3n^{2}-n-15| [/mm]



das verstehe ich nicht, wie er das gemacht hat??


Bezug
                                
Bezug
Konvergenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:12 Sa 28.08.2010
Autor: xgizmo

Kann es daran liegen weil wir ja:

[mm] |(-1)^{n+1}*3| [/mm] erneut in [mm] |(-1)^{n+1}| [/mm] * |3| splitten dann kommt ja nämlich 1*3 = 3 ??

Bezug
                                        
Bezug
Konvergenzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:53 Sa 28.08.2010
Autor: steppenhahn

Hallo,


> Kann es daran liegen weil wir ja:
>  
> [mm]|(-1)^{n+1}*3|[/mm] erneut in [mm]|(-1)^{n+1}|[/mm] * |3| splitten dann
> kommt ja nämlich 1*3 = 3 ??

richtig, der Betrag ist nämlich multiplikativ.

Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de