www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenzkreise
Konvergenzkreise < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzkreise: Verständnis u. Korrektur
Status: (Frage) beantwortet Status 
Datum: 23:32 Do 03.05.2012
Autor: Horst_1991

Aufgabe
Bestimmen Sie jeweils den Konvergenzradius [mm] \rho [/mm] der folgenden Reihen und untersuchen Sie das Konvergenzverhalten in den Randpunkten des Konvergenzintervals für z [mm] \in \IR. [/mm] Skizzieren Sie die Konvergenzkreise.

(a) [mm] \summe_{j=0}^{\infty} (\bruch{2j^2 +j -1}{3j^2+2j+17})^j z^j [/mm]

(b) - (d) Versuch ich später




Hallo,

also zunächst einmal ist die Bestimmung des Konvergenzradius in unserem Buch wie folgt beschrieben:

Die Reihe [mm] \summe_{j=0}^{\infty}a_j(z-z_0)^j [/mm] habe den Konvergenzradius [mm] \rho, [/mm] und es gelte
[mm] \limes_{n\rightarrow\infty} \wurzel{|a_n|}^n [/mm] = a (n-te Wurzel) oder [mm] \limes_{n\rightarrow\infty} |\bruch{a_{n+1}}{a_n}| [/mm] = a
1. Ist a=0, so gilt [mm] \rho [/mm] = [mm] +\infty [/mm]
2. Ist [mm] a=+\infty, [/mm] so gilt [mm] \rho=0 [/mm]
3. Ist [mm] 0
Da in (a) das ganze hoch j ist, hätte ich das "Wurzelkriterium" verwendet. Daraus folgt:

[mm] \limes_{j\rightarrow\infty} \wurzel{(\bruch{2j^2 +j -1}{3j^2+2j+17})^j }^j [/mm]

= [mm] (\bruch{2j^2 +j -1}{3j^2+2j+17}) [/mm]

= [mm] (\bruch{j^2(2+ \bruch{1}{j}- \bruch {1}{j^2})}{j^2(3+ \bruch{2}{j}+\bruch{17}{j^2}}) [/mm]

für [mm] \limes_{j\rightarrow\infty} (\bruch{j^2(2+ \bruch{1}{j}- \bruch {1}{j^2})}{j^2(3+ \bruch{2}{j}+\bruch{17}{j^2}}) [/mm]  = [mm] \bruch{2}{3} [/mm]  = a

Und daraus ergibt sich der Konvergenzradius [mm] \rho=\bruch{1}{a} [/mm] = [mm] \bruch{1}{\bruch{2}{3}} [/mm] = [mm] \bruch{3}{2} [/mm]

Stimmt die Aufgabe bis hier hin ?

Und was ist jetzt mit dem Rändern ?

        
Bezug
Konvergenzkreise: Korrekktur und Querverweis
Status: (Antwort) fertig Status 
Datum: 23:48 Do 03.05.2012
Autor: Loddar

Hallo Horst!


Siehe mal hier; da wird gerade dieselbe Aufgabe behandelt.


> Da in (a) das ganze hoch j ist, hätte ich das
> "Wurzelkriterium" verwendet.

[ok]


> Daraus folgt: [mm]\limes_{j\rightarrow\infty} \wurzel{(\bruch{2j^2 +j -1}{3j^2+2j+17})^j }^j[/mm]

Was macht das $j_$ im Exponenten dort? Du meinst wohl die $j_$-te Wurzel.
Schreibe dafür: [mm] $\wurzel[j]{bla}$ [/mm] .


> = [mm](\bruch{2j^2 +j -1}{3j^2+2j+17})[/mm]
>  
> = [mm](\bruch{j^2(2+ \bruch{1}{j}- \bruch {1}{j^2})}{j^2(3+ \bruch{2}{j}+\bruch{17}{j^2}})[/mm]
>
> für [mm]\limes_{j\rightarrow\infty} (\bruch{j^2(2+ \bruch{1}{j}- \bruch {1}{j^2})}{j^2(3+ \bruch{2}{j}+\bruch{17}{j^2}})[/mm]
>  = [mm]\bruch{2}{3}[/mm]  = a

[ok]


> Und daraus ergibt sich der Konvergenzradius
> [mm]\rho=\bruch{1}{a}[/mm] = [mm]\bruch{1}{\bruch{2}{3}}[/mm] = [mm]\bruch{3}{2}[/mm]

[ok]


> Stimmt die Aufgabe bis hier hin ?
>  
> Und was ist jetzt mit dem Rändern ?

Setze die Randwerte in die Ausgangsreihe ein und untersuche auf Konvergenz / Divergenz.


Gruß
Loddar


Bezug
                
Bezug
Konvergenzkreise: Tipp
Status: (Frage) beantwortet Status 
Datum: 00:13 Fr 04.05.2012
Autor: Horst_1991

Erstmal danke für den Tipp mit den n-ten Wurzeln, die Schreibweise war mir nicht bekannt.

Jetzt hab ich aber noch ne kleine Frage, für [mm] x_1=\bruch{3}{2} [/mm] und [mm] x_2=\bruch{-3}{2} [/mm] überprüf ich ja jetzt noch auf konvergenz bzw. divergenz, und kann danach entscheiden ob der Rand konvergiert oder divergiert.

Gibt es hier einen Trick, vor allem für Klausuren, um Zeit zu sparen. In den Hausübung nehm ich Wolfram Alpha, aber in Klausuren sind Hilfsmittel nunmal nicht erlaubt.


Bezug
                        
Bezug
Konvergenzkreise: Antwort
Status: (Antwort) fertig Status 
Datum: 06:30 Fr 04.05.2012
Autor: angela.h.b.


> Erstmal danke für den Tipp mit den n-ten Wurzeln, die
> Schreibweise war mir nicht bekannt.
>  
> Jetzt hab ich aber noch ne kleine Frage, für
> [mm]x_1=\bruch{3}{2}[/mm] und [mm]x_2=\bruch{-3}{2}[/mm] überprüf ich ja
> jetzt noch auf konvergenz bzw. divergenz, und kann danach
> entscheiden ob der Rand konvergiert oder divergiert.
>
> Gibt es hier einen Trick, vor allem für Klausuren, um Zeit
> zu sparen. In den Hausübung nehm ich Wolfram Alpha, aber
> in Klausuren sind Hilfsmittel nunmal nicht erlaubt.

Hallo,

einen Universaltrick, der fü alle Reihen funktioniert, gibt es nicht.
Du mußt die Randpunkte halt einsetzen ganz normal die Konvergenz der entstehenden Reihen untersuchen.

LG Angela

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de