www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenzkriterien
Konvergenzkriterien < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzkriterien: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:01 Sa 21.06.2008
Autor: Surfer

Hallo,

ich bin grad am Mathe üben und hab noch Probleme zu erkennen wann ich welches Konvergenzkriterium verwende.
Hier drei Bsp.-Aufgaben mit denen ich nicht klar komme:
a) [mm] \summe_{i=1}^{\infty} \bruch{(-1)^{i}}{2i} [/mm]
b) [mm] \summe_{i=1}^{\infty} \bruch{-1}{i+1} [/mm]
c) [mm] \summe_{i=1}^{\infty} \bruch{4^{i}}{(-3)^{i}} [/mm]
wie sehe ich jetzt welches Kriterium ich anwenden muss? Ich kenne das Wurzel-, Quotienten- und Leibnizkriterium weiß aber net wie anwenden :-(

Liebe Grüße
Surfer

        
Bezug
Konvergenzkriterien: Antwort
Status: (Antwort) fertig Status 
Datum: 20:11 Sa 21.06.2008
Autor: Kroni

Hi,

> Hallo,
>  
> ich bin grad am Mathe üben und hab noch Probleme zu
> erkennen wann ich welches Konvergenzkriterium verwende.

Das kommt auch erst mit der Zeit! Dafür braucht man einfach übung....

>  Hier drei Bsp.-Aufgaben mit denen ich nicht klar komme:
>  a) [mm]\summe_{i=1}^{\infty} \bruch{(-1)^{i}}{2i}[/mm]

Hier hast du doch etwas alternierendes. Da solltest du als erstes an das Leibniz-Kriterium denken. Das sagt doch etwas über alternierende Reihen aus.

>  b)
> [mm]\summe_{i=1}^{\infty} \bruch{-1}{i+1}[/mm]

Hier würde ich vlt. erstmal das Quotientenkriterium ausprobieren. Aber das wird dir wohl evtl. nichts bringen. Dann würde ich versuchen, die Formel auf etwas bekanntes zurückzuführen, das hilft auch oft. Man kann auch das Majoranten odder Minorantenkriterium raussuchen.

Hier würde ich evtl. den Bruch auf eine andere Form bringen, und dann mal schaun, was passiert.

>  c)
> [mm]\summe_{i=1}^{\infty} \bruch{4^{i}}{(-3)^{i}}[/mm]

Das riecht nach geometrischer Reihe: => das Gleid ist gleich mit [mm] (-4/3)^i, [/mm] jetzt schau mal, wann die geometrsiche Reihe konvergiert.

>  wie sehe ich
> jetzt welches Kriterium ich anwenden muss? Ich kenne das
> Wurzel-, Quotienten- und Leibnizkriterium weiß aber net wie
> anwenden :-(

Dazu musst du dir die Bedinugen ansehen, und dann "gucken". Vlt. hilft dir bei der c) auch das Wurzelkriterium, aber die geometrische Reihe sollte da auch funktionieren.

LG

Kroni

>  
> Liebe Grüße
>  Surfer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de