www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenzkriterien
Konvergenzkriterien < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzkriterien: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:00 Mi 09.12.2009
Autor: MatheMaexchen

Aufgabe
Weisen Sie die absolute Konvergenz der Reihe [mm] \summe_{k=1}^{\infty} (-1)^{k} [/mm] * [mm] \bruch{1}{k} [/mm] * ( [mm] \bruch{1}{3} [/mm] + [mm] \bruch{1}{k})^{k} [/mm] nach.
HINWEIS: [mm] \limes_{k\rightarrow\infty} \wurzel[k]{k} [/mm] = 1

Hallo an alle,

bei dieser Aufgabe habe ich den Tipp bekommen mit dem Wurzelkriterium zu arbeiten [mm] (\summe_{k=0}^{\infty} a_{k} [/mm] konvergiert  absolut, wenn ein [mm] q\in \IR [/mm] exisitiert, mit 0<q<1 und folgendes gilt: [mm] \wurzel[n]{|a_{n}|} \le [/mm] q; für alle n [mm] \in \IN [/mm] )
da müsste dann ja stehen: [mm] \wurzel[n]{(-1)^{n} * \bruch{1}{n} * ( \bruch{1}{3} + \bruch{1}{n})^{n}} [/mm]
darf ich die faktoren auseinander ziehen? also das ich dann [mm] \wurzel[n]{(-1)^{n}} [/mm] * [mm] \wurzel[n]{\bruch{1}{10}} [/mm] * [mm] \wurzel[n]{(\bruch{1}{3} + \bruch{1}{n})^{n}} [/mm] habe?
wenn ja, ist das dann das selbe wie -1 * [mm] \wurzel[n]{\bruch{1}{10}} [/mm] * [mm] (\bruch{1}{3} [/mm] + [mm] \bruch{1}{n}) [/mm] ?
wenn ich dann davon versuche den grenzwert zu berechnen komm ich im enteffekt auf [mm] -\bruch{1}{3} [/mm] , kann das stimmen oder hab ich schon irgendwo einen fehler?
schonmal im vorraus danke für eure hilfe
lg

        
Bezug
Konvergenzkriterien: Antwort
Status: (Antwort) fertig Status 
Datum: 23:17 Mi 09.12.2009
Autor: steppenhahn

Hallo MatheMaexchen,

Du hast einige Ungenauigkeiten in deiner Lösung.
Zunächst ist im Wurzelkriterium gar kein Limes zu sehen.

Indem du aber zeigst, dass der Grenzwert echt kleiner als 1 ist, hast du auch gezeigt, dass ab einem bestimmten n die Forderung des Wurzelkriteriums erfüllt ist. Wichtig: Manchmal existiert vielleicht gar kein Limes. Du hast aber Glück, hier existiert er, und du kannst es so machen, wie du es oben machst.

> bei dieser Aufgabe habe ich den Tipp bekommen mit dem
> Wurzelkriterium zu arbeiten [mm](\summe_{k=0}^{\infty} a_{k}[/mm]
> konvergiert  absolut, wenn ein [mm]q\in \IR[/mm] exisitiert, mit
> 0<q<1 und folgendes gilt: [mm]\wurzel[n]{|a_{n}|} \le[/mm] q; für
> alle n [mm]\in \IN[/mm] )
>  da müsste dann ja stehen: [mm]\wurzel[n]{(-1)^{n} * \bruch{1}{n} * ( \bruch{1}{3} + \bruch{1}{n})^{n}}[/mm]

Das ist (fast) richtig. Du hast die Beträge vergessen, und den Limes:

[mm]\lim_{n\to\infty}\left(\wurzel[n]{\left|(-1)^{n} * \bruch{1}{n} * ( \bruch{1}{3} + \bruch{1}{n})^{n}\right|}\right)[/mm]

Nun kannst du umformen: [mm] (-1)^{n} [/mm] ist entweder 1 oder -1, wenn man allerdings den Betrag darauf anwendet, wird es immer 1:

$= [mm] \lim_{n\to\infty}\left(\wurzel[n]{\left|\bruch{1}{n}\right| * \left|( \bruch{1}{3} + \bruch{1}{n})^{n}\right|}\right)$ [/mm]

Die restlichen Beträge fallen jetzt einfach deswegen weg, weil sowieso alles positiv ist. Nun kannst du auch die Wurzel auseinander ziehen:

$= [mm] \lim_{n\to\infty}\left(\wurzel[n]{\bruch{1}{n}} * \wurzel[n]{\left( \bruch{1}{3} + \bruch{1}{n}\right)^{n}}\right)$ [/mm]

$= [mm] \lim_{n\to\infty}\left(\bruch{1}{\wurzel[n]{n}} * \left( \bruch{1}{3} + \bruch{1}{n}\right)\right)$ [/mm]

So, nun bist du dran. Du weißt, dass [mm] $\lim_{n\to\infty}\sqrt[n]{n} [/mm] = 1$ als Tipp in deiner Aufgabenstellung, und  [mm] $\left( \bruch{1}{3} + \bruch{1}{n}\right)$ [/mm] konvergiert gegen ..., also darfst du die Grenzwertsätze anwenden.

Gegen was konvergiert also der gesamte Term?

Da das dann echt kleiner als 1 ist, hast du die absolute Konvergenz der Reihe mit dem Wurzelkriterium gezeigt.

Grüße,
Stefan

Bezug
                
Bezug
Konvergenzkriterien: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:49 Do 10.12.2009
Autor: MatheMaexchen

ah ok, ersteinmal vielen dank für die schnelle antwort.
ich bin dann jetzt auf den grenzwert [mm] \bruch{1}{3} [/mm] gekommen, was ja auch möglich ist (da größer als 0 und kleiner als 1).
also nochmal vielen dank!
liebe grüße
MatheMäxchen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de