www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Konvergenzradius
Konvergenzradius < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius: Fortsetzungsfrage
Status: (Frage) beantwortet Status 
Datum: 23:05 Fr 05.11.2004
Autor: ImperatoM

Ich komme kurz vor meiner Zwischenprüfung nochmal auf mein "Lieblingsthema" zurück: Potenzreihen und der Konvergenzradius. Seit meiner grundsätzlichen Frage dazu, habe ich jetzt etwas mehr Durchblick, aber ein bißchen was fehlt noch.

Frage 1: Entstehen Potenzreihen z.B. immer aus Taylor-Reihen? Der Zusammenhang scheint ja wirklich sehr deutlich zu sein!

Wenn ich die Exponentialfunktion nehme, sie nach Taylor entwickele (Frage 2: Ich habe sie um x=0 entwickelt, ist das eigentlich egal?), dann erhalte ich die allgemein bekannte Potenzsummendarstellung der e-Funktion.

In diesem Fall ist es leicht die Reihe von null bis unendlich zu berechnen und wenn man den Rest der Taylorabschätzung nach Lagrange berechnet, dann kommt null heraus. Meine Frage 3 ist: Kommt da immer null heraus, wenn man die komplette Reihe bis unendlich bestimmt und nur etwas anderes als null, wenn man eine begrenzte Taylor-Entwicklung vornimmt - also beispielsweise nur bis zur 5. Ableitung?

Und schließlich meine letzte Frage 4: Wie berechne ich nach der Formel von Cauchy-Hadamard den Konvergenzradius der Exponentialfunktion? Wenn ich die Potenzreihe einsetze, erhalte ich:
r =  [mm] \bruch{1}{limsup(\sqrt[n]{| \bruch{1}{n!}|})} [/mm]
...wenn ich nicht irre.
Aber wie gehts dann weiter?

Vielleicht hat auch jemand schöner rechenbare Beispiele wie  [mm] a_{n} [/mm] = [mm] x^{n} [/mm] zum Beispiel.

        
Bezug
Konvergenzradius: Frage jetzt auch hier noch:
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:22 So 07.11.2004
Autor: ImperatoM

Nachdem noch keien Antwort in Sicht ist, habe ich meine Fragen auch hier gestellt:
http://www.onlinemathe.de/read.php?topicid=1000002431&read=1&kat=Studium

Ich würde mich nach wie vor über Antworten freuen, dann aber bitte gleich unter obigem Link, so daß die Leute dort dann auch wissen, daß die Frage beantwortet ist.

Danke.

Bezug
        
Bezug
Konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 18:57 Di 09.11.2004
Autor: Julius

Hallo Tom!

> Frage 1: Entstehen Potenzreihen z.B. immer aus
> Taylor-Reihen? Der Zusammenhang scheint ja wirklich sehr
> deutlich zu sein!

Eine Potenzreihe stellt im Inneren ihres Konvergenzkreises eine analytische Funktion dar. Entwickelt man sie um den gleichen Punkt in eine Taylorreihe, erhält man die Potenzreihe zurück.
  

> Wenn ich die Exponentialfunktion nehme, sie nach Taylor
> entwickele (Frage 2: Ich habe sie um x=0 entwickelt, ist
> das eigentlich egal?),

Wenn du sie um eine andere Stelle [mm] $x_0$ [/mm] entwickelst, bekommst du:

[mm] $\exp(x) [/mm] = [mm] \sum\limits_{n=0}^{\infty} \frac{(x-x_0)^n}{n!}$. [/mm]

> dann erhalte ich die allgemein
> bekannte Potenzsummendarstellung der e-Funktion.

> In diesem Fall ist es leicht die Reihe von null bis
> unendlich zu berechnen und wenn man den Rest der
> Taylorabschätzung nach Lagrange berechnet, dann kommt null
> heraus. Meine Frage 3 ist: Kommt da immer null heraus, wenn
> man die komplette Reihe bis unendlich bestimmt

Wenn die Taylorreihe konvergiert, dann ja...

> und nur
> etwas anderes als null, wenn man eine begrenzte
> Taylor-Entwicklung vornimmt - also beispielsweise nur bis
> zur 5. Ableitung?

Nimm mal eine Polynomfunktion. Da bricht die Taylor-Entwicklung schon nach endlich vielen Schritten ab. So kann man das also nicht sagen.

> Und schließlich meine letzte Frage 4: Wie berechne ich nach
> der Formel von Cauchy-Hadamard den Konvergenzradius der
> Exponentialfunktion? Wenn ich die Potenzreihe einsetze,
> erhalte ich:
>  r =  [mm]\bruch{1}{limsup(\sqrt[n]{| \bruch{1}{n!}|})} [/mm]

  

> ...wenn ich nicht irre.
>  Aber wie gehts dann weiter?

Es gilt:

[mm] $\liminf_{n \to \infty} \sqrt[n]{n!} [/mm] = + [mm] \infty$. [/mm]

Daher gilt:

$r =  [mm] \bruch{1}{\limsup(\sqrt[n]{| \bruch{1}{n!}|})} [/mm] = + [mm] \infty$. [/mm]

Liebe Grüße
Julius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de