www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Konvergenzradius
Konvergenzradius < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:30 Fr 21.11.2008
Autor: cauchy

Aufgabe
Berechnen Sie alle z [mm] \in \IC [/mm] für die die Reihe [mm] \sum^{\infty}_{n=0}{\bruch{z^n}{1+z^{2n}}} [/mm] konvergent ist.

Hallo Leute,

mir ist klar, dass ich den Konvergenzradius berechnen muss, und danach den Rand betrachten muss, um zu gucken, ob die Reihe auf dem Rand konvergiert oder divergiert.

Die Beispiele, die wir in der Übung dazu gerechnet haben, waren [mm] \sum_{n=1}^{\infty}{\bruch{z^n}{n^2}} [/mm] und [mm] \sum_{n=1}^{\infty}{n(n+1)z^n} [/mm] also immer der Form [mm] \sum_{n=0}^{\infty}{a_n(z-z_0)^n}, [/mm] wie ich Potenzreihen kenne...

Mein Problem ist also: Wie schaffe ich es [mm] \sum^{\infty}_{n=0}{\bruch{z^n}{1+z^{2n}}} [/mm] auf diese Form zu bringen? Oder ist etwa der Nenner [mm] 1+z^{2n} [/mm] mein [mm] a_n? [/mm]

LG, der cauchy

        
Bezug
Konvergenzradius: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 Fr 21.11.2008
Autor: fred97


> Berechnen Sie alle z [mm]\in \IC[/mm] für die die Reihe
> [mm]\sum^{\infty}_{n=0}{\bruch{z^n}{1+z^{2n}}}[/mm] konvergent ist.
>  Hallo Leute,
>  
> mir ist klar, dass ich den Konvergenzradius berechnen muss,
> und danach den Rand betrachten muss, um zu gucken, ob die
> Reihe auf dem Rand konvergiert oder divergiert.
>  
> Die Beispiele, die wir in der Übung dazu gerechnet haben,
> waren [mm]\sum_{n=1}^{\infty}{\bruch{z^n}{n^2}}[/mm] und
> [mm]\sum_{n=1}^{\infty}{n(n+1)z^n}[/mm] also immer der Form
> [mm]\sum_{n=0}^{\infty}{a_n(z-z_0)^n},[/mm] wie ich Potenzreihen
> kenne...
>  
> Mein Problem ist also: Wie schaffe ich es
> [mm]\sum^{\infty}_{n=0}{\bruch{z^n}{1+z^{2n}}}[/mm] auf diese Form
> zu bringen?

Das wirst Du nicht schaffen, denn die vorgelegte Reihe ist keine Potenzreihe
Tipp: Betrachte die Fälle z=0, 0<|z|<1 und |z| > 1. Wie siehts mit |z|=1 aus ?

FRED


> Oder ist etwa der Nenner [mm]1+z^{2n}[/mm] mein [mm]a_n?[/mm]
>  
> LG, der cauchy


Bezug
                
Bezug
Konvergenzradius: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:50 Di 25.11.2008
Autor: cauchy

Ok... für |z|=0 konvergiert die Reihe ja offensichtlich. Aber wie funktionieren die anderen Fälle?? Ich weiß nicht wie ich den Fall 0<|z|<1 behandeln soll usw.

Gibt es vielleicht auch eine andere Möglichkeit? Wir haben schon versucht irgendwas mit der geometrischen Reihe bei dieser Aufgabe anzufangen... sind aber auch nicht weitergekommen.

Dankbar für jeden Tipp, cauchy

Bezug
                        
Bezug
Konvergenzradius: Konvergenzkriterien
Status: (Antwort) fertig Status 
Datum: 19:56 Di 25.11.2008
Autor: Loddar

Hallo cauchy!


Vornweg: was ist mit dem Fall $|z| \ > \ 1$ ?

Für den Fall $|z| \ < \ 1$ musst Du nun eines der bekannten Konvergenzkriterien für Reihen (wie z.B. Wurzelkriterium oder Quotientenkriterium) anwenden.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de