www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenzradius, Reihe
Konvergenzradius, Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius, Reihe: Verstehe Umformung nicht
Status: (Frage) beantwortet Status 
Datum: 13:38 Fr 29.12.2006
Autor: Phoney

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo, ich verstehe eine Umformung nicht

\sum_{k=0}^{\infty} \br{x^{3k}}{(4+(-1)^k)^{3k}}

Im ursprünglichen ging es um den Konvergenzradius, aber jedenfalls formen wir das so um:

$\sum_{k=0}^{\infty} \br{x^{3k}}{(4+(-1)^k)^{3k}}=\sum_{k=0}^{\infty}a_kx^k$

$a_k = \begin{cases} (4+(-1)^{\br{k}{3})^{-k}, & \mbox{, } k=3l, l \in \IN \\ 0, & \mbox{sonst } \end{cases}$

Also wie man auf a_k kommt verstehe ich gar nicht.

Wieso haben wir auf einmal k drittel bei der -1? Ich sehe schon, dass da der Exponent durch drei geteilt wurde - aber mit welchem Rechenschritt kan man das denn machen?

Und waurm haben wir eine Null bei sonst? Weil es keine reellen Lösungen sonst gibt, oder wie?

Hoffe, mir hilft jemand!

Schöne Grüße,
Phoney

        
Bezug
Konvergenzradius, Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 14:30 Fr 29.12.2006
Autor: statler

Guten Tag Johann!

> Hallo, ich verstehe eine Umformung nicht
>  
> [mm]\sum_{k=0}^{\infty} \br{x^{3k}}{(4+(-1)^k)^{3k}}[/mm]
>  
> Im ursprünglichen ging es um den Konvergenzradius, aber
> jedenfalls formen wir das so um:
>  
> [mm]\sum_{k=0}^{\infty} \br{x^{3k}}{(4+(-1)^k)^{3k}}=\sum_{k=0}^{\infty}a_kx^k[/mm]
>  
> [mm]a_k = \begin{cases} (4+(-1)^{\br{k}{3})^{-k}, & \mbox{, } k=3l, l \in \IN \\ 0, & \mbox{sonst } \end{cases}[/mm]
>  
> Also wie man auf [mm]a_k[/mm] kommt verstehe ich gar nicht.

Vielleicht ist es besser, den Summationsindex rechts und links unterschiedlich zu taufen, also links l zu nehmen:
[mm]\sum_{l=0}^{\infty} \br{x^{3l}}{(4+(-1)^{l})^{3l}}=\sum_{k=0}^{\infty}a_{k}x^{k}[/mm]
Und jetzt guckst du, welche Potenzen links überhaupt auftauchen: Das sind die mit den Exponenten 0, 3, 6, ..., also die Vielfachen von 3. Also fallen rechts 2/3 aller Summanden weg (oder haben den Koeffizienten 0). Auftauchen tun nur die mit Exponent k = 3l, und die haben genau den angegebenen Koeffizienten.

So klarer und nachvollziehbar?

Gruß aus HH-Harburg und guten Rutsch
Dieter


Bezug
                
Bezug
Konvergenzradius, Reihe: Nun klar
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:41 Fr 29.12.2006
Autor: Phoney

Guten Abend statler.

> So klarer und nachvollziehbar?

Jetzt ist es klar. Vielen Dank, war ein super Tipp!

Viele Grüße (und ich wünsche ebenfalls einen guten Rutsch)
Johann

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de