www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Konvergenzradius einer Reihe
Konvergenzradius einer Reihe < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenzradius einer Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:56 So 20.03.2011
Autor: rhenser123

Aufgabe
Bestimme den Konvergenzradius der Reihe [mm] \summe_{n=0}^{\infty}z^{n!}. [/mm]

Hallo!

Mir wurde obige Aufgabe gestellt. Von einem Übungsleiter wurde mir erklärt, dass hier Cauchy-Hadamard angewendet werden könne. Die Koeffizienten seien entweder 0 oder 1 und so ergäbe sich der Konvergenzradius von 1.
Ich verstehe aber leider überhaupt nicht, warum man hier CH anwenden kann. Man setzt ja die Koeffizienten [mm] a_{n} [/mm] ein, wenn die Summe folgende Form hat: [mm] \summe_{n=0}^{\infty}a_{n}(z-z_{0})^n. [/mm] Aber diese Form ist doch hier gar nicht gegeben!?

Vielen Dank für eure Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Konvergenzradius einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 19:10 So 20.03.2011
Autor: Fulla

Hallo rhenser123,

> Bestimme den Konvergenzradius der Reihe
> [mm]\summe_{n=0}^{\infty}z^{n!}.[/mm]
>  Hallo!
>  
> Mir wurde obige Aufgabe gestellt. Von einem Übungsleiter
> wurde mir erklärt, dass hier Cauchy-Hadamard angewendet
> werden könne. Die Koeffizienten seien entweder 0 oder 1
> und so ergäbe sich der Konvergenzradius von 1.
>  Ich verstehe aber leider überhaupt nicht, warum man hier
> CH anwenden kann. Man setzt ja die Koeffizienten [mm]a_{n}[/mm] ein,
> wenn die Summe folgende Form hat:
> [mm]\summe_{n=0}^{\infty}a_{n}(z-z_{0})^n.[/mm] Aber diese Form ist
> doch hier gar nicht gegeben!?

Doch. Das siehst du, wenn die Reihe ein wenig umschreibst. Offensichtlich ist [mm]z_0=0[/mm]. Deine Reihe beginnt mit
[mm]\sum_{n=0}^\infty z^{n!}=z^1+z^1+z^2+z^6+z^{24}+z^{120}+\ldots[/mm]
Die Koeffizienten [mm]a_n[/mm] sind demnach
[mm]a_0=0[/mm]
[mm]a_1=2[/mm]
[mm]a_2=1[/mm]
[mm]a_3=\ldots =a_5=0[/mm]
[mm]a_6=1[/mm] ...

Mit Ausnahme von [mm]k=1[/mm] sind also alle [mm]a_k=1[/mm], falls es ein [mm]n\in\mathbb N[/mm] gibt mit [mm]k=n![/mm] Für alle anderen gilt [mm] $a_k=0$. [/mm]

> Vielen Dank für eure Hilfe!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Lieben Gruß,
Fulla


Bezug
                
Bezug
Konvergenzradius einer Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:09 So 20.03.2011
Autor: rhenser123

Jetzt hab ich's verstanden!

Vielen lieben Dank!

Bezug
        
Bezug
Konvergenzradius einer Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 08:42 Mo 21.03.2011
Autor: fred97

Es geht auch ohne Cauchy-Hadamard :

Für z=1 ist die Reihe offensichtlich divergent. Für |z|<1 gilt:

                    [mm] $|z|^{n!} \le |z|^n$ [/mm]   für jedes n [mm] \in \IN. [/mm]

[mm] \sum z^n [/mm] konv. (absolut) für  |z|<1.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de